洛薩•科拉茨(Lothar Collatz,1910.7.6-1990.9.26)是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果它是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.如初始正整數(shù)為3,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:3,10,5,16,8,4,2,1.對(duì)科拉茨(Lothar Collatz)猜想,目前誰(shuí)也不能證明,更不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換(注:1可以多次出現(xiàn))后的第六項(xiàng)為1,則n的所有可能的取值為   
【答案】分析:根據(jù)已知過(guò)程中,變換規(guī)則:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果它是奇數(shù),則將它乘3加1(即3n+1),我們可以從第六項(xiàng)為1出發(fā),逆向逐項(xiàng)即可求出n的所有可能的取值.
解答:解:如果正整數(shù)n按照上述規(guī)則施行變換后的第六項(xiàng)為1,
則變換中的第5項(xiàng)一定是2
變換中的第4項(xiàng)一定是4
變換中的第3項(xiàng)可能是1,也可能是8
變換中的第2項(xiàng)可能是2,也可是16
則n可能是4,也可能是5,也可能是32
則n的所有可能的取值為{4,5,32}
故答案為:{4,5,32}
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是合情推理,其中準(zhǔn)確理解推理的變換過(guò)程任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果它是奇數(shù),則將它乘3加1(即3n+1),是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

洛薩•科拉茨(Lothar Collatz,1910.7.6-1990.9.26)是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即
n2
);如果它是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.如初始正整數(shù)為3,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:3,10,5,16,8,4,2,1.對(duì)科拉茨(Lothar Collatz)猜想,目前誰(shuí)也不能證明,更不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換(注:1可以多次出現(xiàn))后的第六項(xiàng)為1,則n的所有可能的取值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

洛薩•科拉茨(Lothar Collatz,1910.7.6-1990.9.26)是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即
n2
);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)科拉茨(Lothar Collatz)猜想,目前誰(shuí)也不能證明,更不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換(注:1可以多次出現(xiàn))后的第八項(xiàng)為1,則n的所有可能的取值為
{2,3,16,20,21,128}
{2,3,16,20,21,128}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

德國(guó)數(shù)學(xué)家洛薩•科拉茨1937年提出了一個(gè)猜想:任給一個(gè)正整數(shù)n,如果它是偶數(shù),就將它減半;如果它是奇數(shù),則將它乘3再加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng)),按照上述規(guī)則實(shí)施變換(1可以多次出現(xiàn))后的第八項(xiàng)為1,則n的所有可能的對(duì)值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南師大附中高三第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

德國(guó)數(shù)學(xué)家洛薩•科拉茨1937年提出了一個(gè)猜想:任給一個(gè)正整數(shù)n,如果它是偶數(shù),就將它減半;如果它是奇數(shù),則將它乘3再加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng)),按照上述規(guī)則實(shí)施變換(1可以多次出現(xiàn))后的第八項(xiàng)為1,則n的所有可能的對(duì)值為( )
A.2,3,16,20,21,128
B.2,3,16,21
C.2,16,21,128
D.3,16,20,21,64

查看答案和解析>>

同步練習(xí)冊(cè)答案