已知函數(shù)f(x)是定義在R上的奇函數(shù),且它的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),若函數(shù),則f(-5.5)( )
A.
B.1.5
C.
D.-1.5
【答案】分析:由函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),有f(x+1)=f(1-x),即有f(-x)=f(x+2).又函數(shù)f(x)是定義在R上的奇函數(shù),故f(x+2)=-f(x),得到f(x)是周期為4的周期函數(shù),再根據(jù)函數(shù)f(x)是定義在R上的奇函數(shù),將-5.5的函數(shù)值轉(zhuǎn)化為(0,1]上的函數(shù)值進(jìn)行計(jì)算即得.
解答:解:由函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),
有f(x+1)=f(1-x),即有f(-x)=f(x+2).
又函數(shù)f(x)是定義在R上的奇函數(shù),有f(-x)=-f(x).故f(x+2)=-f(x).
從而f(x+4)=-f(x+2)=f(x).即f(x)是周期為4的周期函數(shù).
∴f(-5.5)=f(-1.5-4)=f(-1.5)=-f(1.5)=-f(-1.5+2)=-f(0.5)=-=-,
故選C.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的性質(zhì),函數(shù)解析式的求解常用的方法,本題解題的關(guān)鍵是根據(jù)函數(shù)是一個(gè)奇函數(shù)對(duì)函數(shù)式進(jìn)行整理,本題是一個(gè)中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)計(jì)算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線(xiàn)y=x和y軸的垂線(xiàn),垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿(mǎn)足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線(xiàn)y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案