在△ABC中,若AB⊥AC,AC=b,BC=a,則△ABC的外接圓半徑,將此結論拓展到空間,可得出的正確結論是:在四面體S-ABC中,若SA、SB、SC兩兩垂直,SA=a,SB=b,SC=c,則四面體S-ABC的外接球半徑R=   
【答案】分析:這是一個類比推理的題,在由平面圖形到空間圖形的類比推理中,一般是由點的性質類比推理到線的性質,由線的性質類比推理到面的性質,由已知在平面幾何中,△ABC中,若AB⊥AC,AC=b,BC=a,則△ABC的外接圓半徑,我們可以類比這一性質,推理出在四面體S-ABC中,若SA、SB、SC兩兩垂直,SA=a,SB=b,SC=c,則四面體S-ABC的外接球半徑R=
解答:解:由平面圖形的性質類比推理空間圖形的性質時
一般是由點的性質類比推理到線的性質,
由線的性質類比推理到面的性質,
由圓的性質推理到球的性質.
由已知在平面幾何中,△ABC中,若AB⊥AC,AC=b,BC=a,
則△ABC的外接圓半徑
我們可以類比這一性質,推理出:
在四面體S-ABC中,若SA、SB、SC兩兩垂直,SA=a,SB=b,SC=c,
則四面體S-ABC的外接球半徑R=
故答案為:
點評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,若
AB
AC
=
BA
BC
,則△ABC的形狀是( 。
A、直角三角形
B、正三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若
AB
AC
=
AB
CB
=4
,則邊AB的長等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點,已知
AM
=
c
AN
=
d
,試用
c
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
AC
=
b
若P,Q,S為線段BC的四等分點,試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個結論:
①?x∈R,2x>x2
②“若x2<1,則-1<x<1”的逆否命題是“若-1<x<1,則x2≥1”;
③要得到y(tǒng)=cos2x的圖象,只需要將y=sin(2x+
π
4
)的圖象向左平移
π
8
個單位;
④在△ABC中,若
AB
CA
>0,則∠A為銳角;
⑤函數(shù)f(x)=sin(2x+
π
3
)在[0,
π
12
]上是增函數(shù),在[
π
12
,
π
2
]上是減函數(shù).
其中正確結論的序號是
③⑤
③⑤
.(填寫你認為正確的所有結論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)設
a
b
都是非零向量,則“
a
b
=±|
a
|•|
b
|
”是“
a
、
b
共線”的充要條件
(2)將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個單位,得到函數(shù)y=sin2x的圖象;
(3)在△ABC中,若AB=2,AC=3,∠ABC=
π
3
,則△ABC必為銳角三角形;
(4)在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
其中正確命題的序號是
(1)(3)
(1)(3)
(寫出所有正確命題的序號).

查看答案和解析>>

同步練習冊答案