已知正三棱柱ABC-A1B1C1的各條棱長(zhǎng)都相等,M是側(cè)棱CC1的中點(diǎn),則異面直線AB1和BM所成的角的大小是______________.

 

【答案】

【解析】

試題分析:由題意設(shè)棱長(zhǎng)為a,補(bǔ)正三棱柱ABC-A2B2C2,構(gòu)造直角三角形A2BM,解直角三角形求出BM,利用勾股定理求出A2M,從而求解.設(shè)棱長(zhǎng)為a,補(bǔ)正三棱柱ABC-A2B2C2(如圖)

平移,連接,∠MBA2即為所成的角,

在△A2BM中,A2B=,,,結(jié)合勾股定理∴2+ =可知所求的角為.故答案為

考點(diǎn):異面直線所成的角

點(diǎn)評(píng):此題主要考查了異面直線及其所成的角和勾股定理的應(yīng)用,計(jì)算比較復(fù)雜,要仔細(xì)的做.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為1,高為h(h>2),動(dòng)點(diǎn)M在側(cè)棱BB1上移動(dòng).設(shè)AM與側(cè)面BB1C1C所成的角為θ.
(1)當(dāng)θ∈[
π
6
,
π
4
]
時(shí),求點(diǎn)M到平面ABC的距離的取值范圍;
(2)當(dāng)θ=
π
6
時(shí),求向量
AM
BC
夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱柱ABC-A1B1C1的每條棱長(zhǎng)均為a,M為棱A1C1上的動(dòng)點(diǎn).
(1)當(dāng)M在何處時(shí),BC1∥平面MB1A,并證明之;
(2)在(1)下,求平面MB1A與平面ABC所成的二面角的大。
(3)求B-AB1M體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱柱ABC-A1B1C1,底面邊長(zhǎng)為8,對(duì)角線B1C=10,
(1)若D為AC的中點(diǎn),求證:AB1∥平面C1BD;
(2)若CD=2AD,BP=λPB1,當(dāng)λ為何值時(shí),AP∥平面C1BD;
(3)在(1)的條件下,求直線AB1到平面C1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1中,D是BC的中點(diǎn),AA1=AB=1.
(1)求證:平面AB1D⊥平面B1BCC1
(2)求證:A1C∥平面AB1D;
(3)求二面角B-AB1-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•湖北模擬)如圖,已知正三棱柱ABC-A1B1C1各棱長(zhǎng)都為a,P為棱A1B上的動(dòng)點(diǎn).
(Ⅰ)試確定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)C1到面PAC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案