函數(shù),其圖象在處的切線方程為
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若函數(shù)的圖象與的圖象有三個不同的交點,求實數(shù)的取值范圍;
(Ⅲ)是否存在點P,使得過點P的直線若能與曲線圍成兩個封閉圖形,則這兩個封閉圖形的面積相等?若存在,求出P點的坐標;若不存在,說明理由.
解:(Ⅰ)由題意得,
解得,,
.……………………………………………………………4分
(Ⅱ)由,可得,
,
則由題意可得有三個不相等的實根,
的圖象與軸有三個不同的交點,
,則的變化情況如下表.




4



0

0



極大值

極小值

則函數(shù)的極大值為,極小值為.……………………6分
的圖象與的圖象有三個不同交點,則有:
解得.……………………………………………………8分
(Ⅲ)存在點P滿足條件.……………………………………………………………9分
,∴,由,得,.當時,;當時,;當時,.可知極值點為,,線段AB中點在曲線上,且該曲線關(guān)于點成中心對稱.證明如下:∵,∴
,∴
上式表明,若點為曲線上任一點,其關(guān)于的對稱點也在曲線上,曲線關(guān)于點對稱.故存在點,使得過該點的直線若能與曲線圍成兩個封閉圖形,這兩個封閉圖形的面積相等.…………14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,某市擬在道路的一側(cè)修建一條運動賽道,賽道的前一部分為曲線段ABC,該曲線段為函數(shù)y=(A>0,>0,),x∈[-3,0]的圖象,且圖象的最高點為B(-1,);賽道的中間部分為千米的水平跑到CD;賽道的后一部分為以O圓心的一段圓弧

(1)求,的值和∠DOE的值;
(2)若要在圓弧賽道所對應的扇形區(qū)域內(nèi)建一個“矩形草坪”,如圖所示,矩形的一邊在道路AE上,一個頂點在扇形半徑OD上.記∠POE=,求當“矩形草坪”的面積最大時的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)給定函數(shù)
(1)試求函數(shù)的單調(diào)減區(qū)間;
(2)已知各項均為負的數(shù)列滿足,求證:;
(3)設,為數(shù)列的前項和,求證:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)設
(1)當時,求:函數(shù)的單調(diào)區(qū)間;
(2)若時,求證:當時,不等式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)
(Ⅰ)若處的切線相互垂直,求這兩個切線方程.
(Ⅱ)若單調(diào)遞增,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(其中常數(shù)e為自然對數(shù)的底數(shù)),則=       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若的解析式;
(Ⅱ)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).f(x)在點x=0處取得極值,并且在區(qū)間[0,2]和[4,5上具有相反的單調(diào)性.
(1)求實數(shù)的值;
(2)求實數(shù)的取值范圍

查看答案和解析>>

同步練習冊答案