(本小題13分)已知橢圓,長(zhǎng)軸長(zhǎng)是,離心率是.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)橢圓右焦點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),在軸上是否存在定點(diǎn),使為常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(本小題13分)解析:(Ⅰ)------------5分
(Ⅱ)當(dāng)不與軸垂直時(shí),設(shè)過(guò)點(diǎn)的直線(xiàn)
并設(shè),由
消去得
--------8分
是與無(wú)關(guān)的常數(shù),所以即,此時(shí) --10分
當(dāng)與軸垂直時(shí),點(diǎn)的坐標(biāo)分別是,
此時(shí).-----12分
綜上所述,在軸上存在定點(diǎn),使為常數(shù).------------13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題
(本小題13分)已知向量,
(1)當(dāng)∥時(shí),求的值;
(2)求在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市示范校高三12月綜合練習(xí)(一)文科數(shù)學(xué) 題型:解答題
(本小題13分)
已知等比數(shù)列滿(mǎn)足,且是,的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,求使 成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高一上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本小題13分)
已知直線(xiàn)過(guò)直線(xiàn)和的交點(diǎn);
(Ⅰ)若直線(xiàn)與直線(xiàn) 垂直,求直線(xiàn)的方程.
(Ⅱ)若原點(diǎn)到直線(xiàn)的距離為1.求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省協(xié)作體高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題13分)
已知拋物線(xiàn)方程為,過(guò)作直線(xiàn).
①若與軸不垂直,交拋物線(xiàn)于A(yíng)、B兩點(diǎn),是否存在軸上一定點(diǎn),使得?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由?
②若與軸垂直,拋物線(xiàn)的任一切線(xiàn)與軸和分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線(xiàn)長(zhǎng)為定值,試證之;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題
(本小題13分)已知向量,
(1)當(dāng)∥時(shí),求的值;
(2)求在上的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com