【題目】已知二次函數(shù)f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,試確定此二次函數(shù)的解析式.
【答案】f(x)=-4x2+4x+7.
【解析】
(解法1:利用一般式)設(shè)f(x)=ax2+bx+c(a≠0),解得
∴所求二次函數(shù)為f(x)=-4x2+4x+7.
(解法2:利用頂點(diǎn)式)設(shè)f(x)=a(x-m)2+n,∵f(2)=f(-1),∴拋物線對(duì)稱(chēng)軸為x==,即m=;又根據(jù)題意,函數(shù)最大值ymax=8,
∴n=8,∴f(x)=a2+8.∵f(2)=-1,∴a+8=-1,解得a=-4.
∴f(x)=-42+8=-4x2+4x+7.
(解法3:利用兩根式)由題意知f(x)+1=0的兩根為x1=2,x2=-1,故可設(shè)f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.又函數(shù)有最大值ymax=8,即=8,解得a=-4或a=0(舍),∴所求函數(shù)的解析式為f(x)=-4x2-(-4)x-2×(-4)-1=-4x2+4x+7
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖是一幾何體的平面展開(kāi)圖,其中四邊形ABCD為正方形,E,F,G,H分別為,,,的中點(diǎn),在此幾何體中,給出下面五個(gè)結(jié)論:①平面平面ABCD;②平面BDG;③平面PBC;④平面BDG;⑤平面BDG.
其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列滿足:
(1)求的值;
(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)設(shè)假設(shè)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線與圓:相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的右焦點(diǎn)F2和上頂點(diǎn)B在直線上,過(guò)橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要設(shè)計(jì)一張矩形廣告,該廣告含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為,四周空白的寬度為,兩欄之間的中縫空白的寬度為.
(1)設(shè)矩形欄目寬度為,求矩形廣告面積的表達(dá)式
(2)怎樣確定廣告的高與寬的尺寸(單位:),能使矩形廣告面積最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在極大值,且極大值為1,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷(xiāo)海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷(xiāo)合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.
(1)求一件手工藝品質(zhì)量為B級(jí)的概率;
(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷(xiāo),且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷(xiāo),利潤(rùn)記為100元.
①求10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是多少件;
②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com