【題目】圖是一幾何體的平面展開(kāi)圖,其中四邊形ABCD為正方形,E,F,G,H分別為,,,的中點(diǎn),在此幾何體中,給出下面五個(gè)結(jié)論:①平面平面ABCD;②平面BDG;③平面PBC;④平面BDG;⑤平面BDG.

其中正確結(jié)論的序號(hào)是________.

【答案】①②③④

【解析】

先把平面展開(kāi)圖還原為一個(gè)四棱錐,再根據(jù)直線與平面、平面與平面平行的判定定理判斷即可.

先把平面展開(kāi)圖還原為一個(gè)四棱錐,如圖所示:

E,F,GH分別為的中點(diǎn),

確定平面平面

平面平面

同理平面平面,

平面平面,所以①正確;

②連接交于點(diǎn),則中點(diǎn),

中點(diǎn),平面BDG,

平面BDG ,平面BDG,所以②正確;

③同②同理可證平面PBC,所以③正確;

④同②同理可證平面BDG,所以④正確;

平面BDG相交,所以與平面BDG相交,

所以⑤不正確.

故答案為:①②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱(chēng)為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;

3)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】太極圖是由黑白兩個(gè)魚(yú)形紋組成的圖案,俗稱(chēng)陰陽(yáng)魚(yú),太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對(duì)統(tǒng)一的和諧美,定義:能夠?qū)A的周長(zhǎng)和面積同時(shí)等分成兩個(gè)部分的函數(shù)稱(chēng)為圓的一個(gè)太極函數(shù),則下列有關(guān)說(shuō)法中:

①對(duì)于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,都不能為偶函數(shù);

②函數(shù)是圓的一個(gè)太極函數(shù);

③直線所對(duì)應(yīng)的函數(shù)一定是圓的太極函數(shù);

④若函數(shù)是圓的太極函數(shù),則

所有正確的是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1,曲線C2

1)指出C1,C2各是什么曲線,并說(shuō)明C1C2公共點(diǎn)的個(gè)數(shù);

2)若把C1C2上各點(diǎn)的縱坐標(biāo)都?jí)嚎s為原來(lái)的一半,分別得到曲線,.寫(xiě)出,的參數(shù)方程.公共點(diǎn)的個(gè)數(shù)和C1C2公共點(diǎn)的個(gè)數(shù)是否相同?說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,,設(shè)函數(shù)

1)若函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),且時(shí),求函數(shù)的單調(diào)增區(qū)間;

2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某新成立的汽車(chē)租賃公司今年年初用102萬(wàn)元購(gòu)進(jìn)一批新汽車(chē),在使用期間每年有20萬(wàn)元的收入,并立即投入運(yùn)營(yíng),計(jì)劃第一年維修、保養(yǎng)費(fèi)用1萬(wàn)元,從第二年開(kāi)始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加1萬(wàn)元,該批汽車(chē)使用后同時(shí)該批汽車(chē)第年底可以以萬(wàn)元的價(jià)格出售.

(1)求該公司到第年底所得總利潤(rùn)(萬(wàn)元)關(guān)于(年)的函數(shù)解析式,并求其最大值;

(2)為使經(jīng)濟(jì)效益最大化,即年平均利潤(rùn)最大,該公司應(yīng)在第幾年底出售這批汽車(chē)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),圓的標(biāo)準(zhǔn)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求直線和圓的極坐標(biāo)方程;

(2)若射線與的交點(diǎn)為,與圓的交點(diǎn)為,且點(diǎn)恰好為線段的中點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案