7.已知x2+y2≤1,則|x2+2xy-y2|的最大值為$\sqrt{2}$.

分析 由實數(shù)x、y滿足x2+y2≤1,利用三角函數(shù)代換x=cosθ,y=sinθ,結(jié)合三角函數(shù)知識即可得出.

解答 解:∵實數(shù)x、y滿足x2+y2≤1,
∴可設(shè)x=cosθ,y=sinθ(θ∈[0,2π)),
|x2+2xy-y2|=|cos2θ+sin2θ|=|$\sqrt{2}$sin(2θ+$\frac{π}{4}$)|≤$\sqrt{2}$,當(dāng)且僅當(dāng)|sin(2θ+$\frac{π}{4}$)|=1,取得最大值.
故答案為:$\sqrt{2}$.

點評 本題考查了圓的參數(shù)方程、三角函數(shù)代換、三角函數(shù)基本關(guān)系式等基礎(chǔ)知識與基本技能方法,考查了轉(zhuǎn)化方法和計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x-1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若將f(x)的圖象向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值,并求出取得最值時的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計算:$[{{{(3\frac{3}{8})}^{\frac{2}{3}}}-{{(5\frac{4}{9})}^{0.5}}+{{0.008}^{\frac{2}{3}}}÷{{0.02}^{\frac{1}{2}}}×{{0.32}^{\frac{1}{2}}}}]÷{0.0625^{0.25}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知圓C:(x-1)2+(y-2)2=25及直線l:(2m+1)x+(m+1)y=7m+4(m∈R),則直線l過的定點及直線與圓相交得的最短弦長分別為( 。
A.(3,1),$4\sqrt{5}$B.(2,1),$4\sqrt{5}$C.(-3,1),$4\sqrt{3}$D.(2,-1),3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|log${\;}_{\frac{1}{2}}$(x+1)≥-2},B={x|$\frac{x+2}{1-x}$≥2},則 A∩B=( 。
A.(-1,1)B.[0,1)C.[0,3]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,三個內(nèi)角∠A,∠B,∠C所對的邊分別為a,b,c,且A:B:C=1:2:3,則a:b:c=(  )
A.3:2:1B.2:$\sqrt{3}$:1C.1:2:3D.1:$\sqrt{3}$:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-x,x≤0\\-{2^x},x>0\end{array}\right.$,則“f(x)≤0”是“x=0”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是一名籃球運動員在最近6場比賽中所得分?jǐn)?shù)的莖葉圖,則下列關(guān)于該運動員所得分?jǐn)?shù)的說法錯誤的是( 。
A.中位數(shù)為14B.眾數(shù)為13C.平均數(shù)為15D.方差為19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{|2x-y|≤2}\\{|2x+y|≤2}\end{array}\right.$,則z=|x|+|y|的最大值是2.

查看答案和解析>>

同步練習(xí)冊答案