【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為.
(1)寫(xiě)出曲線(xiàn)C1和C2的直角坐標(biāo)方程;
(2)已知P為曲線(xiàn)C2上的動(dòng)點(diǎn),過(guò)點(diǎn)P作曲線(xiàn)C1的切線(xiàn),切點(diǎn)為A,求|PA|的最大值.
【答案】(1)C1的直角坐標(biāo)方程為;C2的直角坐標(biāo)方程為;(2).
【解析】
(1)由(為參數(shù)),消去參數(shù),可得曲線(xiàn)C1的直角坐標(biāo)方程.由,得ρ2+3ρ2sin2θ=4,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線(xiàn)C2的直角坐標(biāo)方程;
(2)由P為曲線(xiàn)C2上的動(dòng)點(diǎn),設(shè)P(2cosα,sinα),則P與圓的圓心的距離,利用二次函數(shù)求最值,再由勾股定理求|PA|的最大值.
解:(1)由(為參數(shù)),消去參數(shù),可得.
∴曲線(xiàn)C1的直角坐標(biāo)方程為;
由,得ρ2+3ρ2sin2θ=4,
即x2+y2+3y2=4,即.
∴曲線(xiàn)C2的直角坐標(biāo)方程為;
(2)∵P為曲線(xiàn)C2上的動(dòng)點(diǎn),又曲線(xiàn)C2的參數(shù)方程為
∴設(shè)P(2cosα,sinα),
則P與圓C1的圓心的距離
.
要使|PA|的最大值,則d最大,當(dāng)sinα時(shí),d有最大值為.
∴|PA|的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P-ABCD的底面是正方形,底面ABCD,,E是側(cè)棱的中點(diǎn).
(1)求異面直線(xiàn)AE與PD所成的角;
(2)求點(diǎn)B到平面ECD的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會(huì)影響生二孩的意愿,現(xiàn)隨機(jī)抽取某地200戶(hù)家庭進(jìn)行調(diào)查統(tǒng)計(jì).這200戶(hù)家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);
生二孩 | 不生二孩 | 合計(jì) | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計(jì) | 200 |
(2)在抽取的200戶(hù)家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶(hù),進(jìn)一步了解情況,在抽取的7戶(hù)中再隨機(jī)抽取4戶(hù),求抽到的頭胎是女孩的家庭戶(hù)數(shù)的分布列及數(shù)學(xué)期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形是邊長(zhǎng)為5的菱形,對(duì)角線(xiàn)(如圖1),現(xiàn)以為折痕將菱形折起,使點(diǎn)達(dá)到點(diǎn)的位置.棱,的中點(diǎn)分為,,且四面體的外接球球心落在四面體內(nèi)部(如圖2),則線(xiàn)段長(zhǎng)度的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線(xiàn)y2=4x焦點(diǎn)F的直線(xiàn)交該拋物線(xiàn)于A,B兩點(diǎn),且|AB|=4,若原點(diǎn)O是△ABC的垂心,則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的極大值點(diǎn);
(2)當(dāng),時(shí),若過(guò)點(diǎn)存在3條直線(xiàn)與曲線(xiàn)相切,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn):(α為參數(shù))經(jīng)過(guò)伸縮變換得到曲線(xiàn),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線(xiàn)l的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程;
(2)設(shè)點(diǎn)P是曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)l距離d的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)有60名學(xué)生,學(xué)號(hào)分別為1~60,其中男生35人,女生25人.為了了解學(xué)生的體質(zhì)情況,甲、乙兩人對(duì)全班最近一次體育測(cè)試的成績(jī)分別進(jìn)行了隨機(jī)抽樣.其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣,他們得到各12人的樣本數(shù)據(jù)如下所示,并規(guī)定體育成績(jī)大于或等于80人為優(yōu)秀.
甲抽取的樣本數(shù)據(jù):
學(xué)號(hào) | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 | 男 | 男 |
體育成績(jī) | 90 | 80 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 80 | 83 | 70 |
女抽取的樣本數(shù)據(jù):
學(xué)號(hào) | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 | 52 | 57 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 | 女 |
體育成績(jī) | 95 | 85 | 85 | 80 | 70 | 80 | 80 | 65 | 70 | 60 | 70 | 80 |
(Ⅰ)在乙抽取的樣本中任取4人,記這4人中體育成績(jī)優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;
(Ⅱ)請(qǐng)你根據(jù)乙抽取的樣本數(shù)據(jù),判斷是否有95%的把握認(rèn)為體育成績(jī)是否為優(yōu)秀和性別有關(guān);
(Ⅲ)判斷甲、乙各用的何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu),說(shuō)明理由.
附:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱錐的側(cè)棱和底面邊長(zhǎng)相等,在這個(gè)正四棱錐的條棱中任取兩條,按下列方式定義隨機(jī)變量的值:
若這兩條棱所在的直線(xiàn)相交,則的值是這兩條棱所在直線(xiàn)的夾角大。ɑ《戎疲;
若這兩條棱所在的直線(xiàn)平行,則;
若這兩條棱所在的直線(xiàn)異面,則的值是這兩條棱所在直線(xiàn)所成角的大小(弧度制).
(1)求的值;
(2)求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com