已知(1+i)z=2,則z=
 
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:把已知的等式變形,然后直接利用復數(shù)代數(shù)形式的乘除運算化簡求值.
解答: 解:∵(1+i)z=2,
z=
2
1+i
=
2(1-i)
(1+i)(1-i)
=
2(1-i)
2
=1-i
,
故答案為:1-i.
點評:本題考查了復數(shù)代數(shù)形式的乘除運算,是基礎的計算題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

△ABC中,a,b,c分別是A,B,C的對邊,且滿足a2+c2=b2+ac,則B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“若x<2,則x<3”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={y|y=x2+2x-3,x∈R},集合N={x|-1≤x≤5},則M∩N=( 。
A、{y|y≥-4}
B、{y|-1≤y≤5}
C、{y|-4≤y≤-1}
D、φ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將98化成五進制數(shù)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
x-3
+lg(x-1)的定義域是(  )
A、(1,+∞)
B、(3,+∞)
C、(1,3)
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={(x,y)|x2+y2≤25},N={(x,y)|(x-a)2+y2≤9},若M∪N=M,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐ABCD中,E、H、F、G分別是邊AB、AD、BC、CD的中點.
(1)求證:BC與AD是異面直線;
(2)求證:EG與FH相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2+4x-2,當a≤x≤a+1(其中a為參數(shù))時,求y的最大值,最小值和相應的x值.

查看答案和解析>>

同步練習冊答案