已知二次函數(shù)為常數(shù),且)滿足條件:,且方程有兩個相等的實(shí)數(shù)根.
(1)求的解析式;
(2)求函數(shù)在區(qū)間上的最大值和最小值;
(3)是否存在實(shí)數(shù)使的定義域和值域分別為,如果存在,求出的值,如不存在,請說明理由.
(1);(2)最大值,最小值  (3)存在滿足題設(shè)條件。

試題分析:(1)∵,∴,又方程有兩個相等的實(shí)數(shù)根,∴,∴,∴;(2)∵,∴當(dāng)x=1時,函數(shù)f(x)有最大值,當(dāng)x=-3時,函數(shù)f(x)有最小值  (3) 由(2)知,m=1時,不合題意,故,∴,∴存在滿足題設(shè)條件。
點(diǎn)評:二次函數(shù)在閉區(qū)間上的最值可能出現(xiàn)以下三種情況:(1)若,則在區(qū)間上是增函數(shù),則,;(2)若,則. 此時的最大值視對稱軸與區(qū)間端點(diǎn)的遠(yuǎn)近而定:①當(dāng)時,;②當(dāng)時,.(3)若,則在區(qū)間上是減函數(shù),則
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象過點(diǎn)(1,13),圖像關(guān)于直線對稱。
(1)求的解析式。
(2)已知,,
① 若函數(shù)的零點(diǎn)有三個,求實(shí)數(shù)的取值范圍;
②求函數(shù)在[,2]上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)二次函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013427204515.png" style="vertical-align:middle;" />,則的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的最小值為1,且
(1)求的解析式;  
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖像恒在的圖像上方,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知關(guān)于x的方程x2+(m-3)x+m=0
(1)若此方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
(2)若此方程的兩實(shí)數(shù)根之差的絕對值小于,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的值域是               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題共兩個小題,每題5分,滿分10分)
① 已知不等式的解集是,求的值;
② 若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002926417303.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),且.則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)解下列關(guān)于的不等式:  

查看答案和解析>>

同步練習(xí)冊答案