函數(shù)的值域是               .

試題分析:令,由二次函數(shù)的性質(zhì)得值域為。
點評:此題用的是換元法求函數(shù)的值域。再用換元法時,我們一定要注意新元的取值范圍。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù),滿足,且方程有兩個相等的實根.
(1)求函數(shù)的解析式;
(2)當時,求函數(shù)的最小值的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一次函數(shù)f(x)是減函數(shù),且滿足f[f(x)]=4x-1,則f(x)=__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知是定義在上的奇函數(shù),當時,。

(1)求的值;
(2)求的解析式并畫出簡圖;
(3)寫出的單調(diào)區(qū)間(不用證明)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程在區(qū)間上有解,則實數(shù)的取值范圍是        (      )                           
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)為常數(shù),且)滿足條件:,且方程有兩個相等的實數(shù)根.
(1)求的解析式;
(2)求函數(shù)在區(qū)間上的最大值和最小值;
(3)是否存在實數(shù)使的定義域和值域分別為,如果存在,求出的值,如不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

f(x)=-x2+mx在(-∞,1]上是增函數(shù),則m的取值范圍是(  )
A.{2}B.(-∞,2]C.[2,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果函數(shù)對任意實數(shù)均有,那么( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)在閉區(qū)間上有最大值5,最小值1,則的取值范圍是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案