已知橢圓E=1(ab>0),F1(-c,0),F2(c,0)為橢圓的兩個焦點,M為橢圓上任意一點,且|MF1|,|F1F2|,|MF2|構(gòu)成等差數(shù)列,點F2(c,0)到直線lx的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,求出該圓的方程.
(1)=1(2)x2y2
(1)由題知2|F1F2|=|MF1|+|MF2|,
即2×2c=2a,得a=2c.
又由c=3,解得c=1,a=2,b.
∴橢圓E的方程為=1.
(2)假設(shè)以原點為圓心,r為半徑的圓滿足條件.
(ⅰ)若圓的切線的斜率存在,并設(shè)其方程為ykxm,則r,r2,①
消去y,整理得(3+4k2)x2+8kmx+4(m2-3)=0,設(shè)A(x1,y1),B(x2,y2),有
又∵,∴x1x2y1y2=0,
即4(1+k2)(m2-3)-8k2m2+3m2+4k2m2=0,化簡得m2 (k2+1),②
由①②求得r2.
所求圓的方程為x2y2.
(ⅱ)若AB的斜率不存在,設(shè)A(x1,y1),則B(x1,-y1),∵,∴·=0,有=0,,代入=1,得.此時仍有r2=||=.
綜上,總存在以原點為圓心的圓x2y2滿足題設(shè)條件
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點A(-2,0)和B(2,0),曲線E上任一點P滿足|PA|-|PB|=2.
(1)求曲線E的方程;
(2)延長PB與曲線E交于另一點Q,求|PQ|的最小值;
(3)若直線l的方程為x=a(a≤),延長PB與曲線E交于另一點Q,如果存在某一位置,使得從PQ的中點R向l作垂線,垂足為C,滿足PC⊥QC,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的離心率為,且經(jīng)過點過坐標原點的直線均不在坐標軸上,與橢圓M交于A、C兩點,直線與橢圓M交于B、D兩點
(1)求橢圓M的方程;
(2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標軸平行的直線與橢圓交于兩點,坐標原點到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線(其中).
(1)若定點到雙曲線上的點的最近距離為,求的值;
(2)若過雙曲線的左焦點,作傾斜角為的直線交雙曲線于、兩點,其中,是雙曲線的右焦點.求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動直線與橢圓交于、兩不同點,且△的面積=,其中為坐標原點.
(1)證明均為定值;
(2)設(shè)線段的中點為,求的最大值;
(3)橢圓上是否存在點,使得?若存在,判斷△的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是任意實數(shù),則方程所表示的曲線一定不是(    )
A.直線B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

坐標平面上有兩個定點A,B和動點P,如果直線PA,PB的斜率之積為定值m,則點P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號填在橫線上:         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線lyx,圓Ox2y2=5,橢圓E=1(a>b>0)的離心率e,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

查看答案和解析>>

同步練習(xí)冊答案