坐標(biāo)平面上有兩個(gè)定點(diǎn)A,B和動(dòng)點(diǎn)P,如果直線PA,PB的斜率之積為定值m,則點(diǎn)P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號(hào)填在橫線上:         .
①②④⑤
以直線AB為x軸,線段AB的中垂線為y軸建立平面直角坐標(biāo)系,設(shè)A(-a,0),B(a,0),P(x,y),則有·=m,即mx2-y2=a2m,

當(dāng)m<0且m≠-1時(shí),軌跡為橢圓;當(dāng)m>0時(shí),軌跡為雙曲線;當(dāng)m=-1時(shí),軌跡為圓;當(dāng)m=0時(shí),軌跡為一直線;但軌跡不可能是拋物線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知,,,分別是橢圓的四個(gè)頂點(diǎn),△是一個(gè)邊長(zhǎng)為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動(dòng)點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),,直線交于點(diǎn)
(。┣的最大值;
(ⅱ)試問(wèn):..,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知左焦點(diǎn)為F(-1,0)的橢圓過(guò)點(diǎn)E(1,).過(guò)點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段AB的中點(diǎn),求k1;
(3)若k1+k2=1,求證直線MN恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MA的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知離心率的橢圓一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2) 若斜率為1的直線交橢圓兩點(diǎn),且,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).

(1)求拋物線C的方程;
(2)過(guò)點(diǎn)F作直線交拋物線C于A,B兩點(diǎn),若直線AO,BO分別交直線l:y=x-2于M,N兩點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F1、F2分別是橢圓C=1(ab>0)的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°.

(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓E=1(ab>0),F1(-c,0),F2(c,0)為橢圓的兩個(gè)焦點(diǎn),M為橢圓上任意一點(diǎn),且|MF1|,|F1F2|,|MF2|構(gòu)成等差數(shù)列,點(diǎn)F2(c,0)到直線lx的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點(diǎn)為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)AB,且,求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,,給出滿足的條件,就能得到動(dòng)點(diǎn)的軌跡方程,下表給出了一些條件及方程:
條件
方程
周長(zhǎng)為10

面積為10

中,

則滿足條件①、②、③的點(diǎn)軌跡方程按順序分別是 
A. 、   B. 、
C. 、    D. 、

查看答案和解析>>

同步練習(xí)冊(cè)答案