【題目】已知拋物線,過點(diǎn)的直線交于,兩點(diǎn),且滿足以線段為直徑的圓,圓心為,且過坐標(biāo)原點(diǎn).
(1)求拋物線的方程;
(2)若圓過點(diǎn),求直線的方程和圓的方程.
【答案】(1)(2)當(dāng)時(shí),,,當(dāng)時(shí),,
【解析】
(1)依題意得,直線過點(diǎn),可設(shè),與拋物線聯(lián)立,寫出韋達(dá)定理,再根據(jù)圓的性質(zhì)得出,代數(shù)化簡求出,即可得出拋物線的方程;
(2)因?yàn)閳A的直徑為,且過點(diǎn),由圓的性質(zhì)得出,結(jié)合(1)中的韋達(dá)定理,代數(shù)化簡求得的值,因此得出直線的方程和圓的方程.
(1)設(shè),,,
聯(lián)立方程有,,
,,
又以線段為直徑的圓,圓心為,且過坐標(biāo)原點(diǎn),
有,,有,即拋物線的方程為.
(2)由(1)可得,,,
由圓過點(diǎn),可得,
故,
故(1)可得,,可得,
解得或者,
當(dāng)時(shí),,,
當(dāng)時(shí),,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱中,,,,,,分別為棱的中點(diǎn)
(1)求證:
(2)求直線與所成的角
(3)若為線段的中點(diǎn),在平面內(nèi)的射影為,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系xOy的原點(diǎn)為極坐標(biāo)系的極點(diǎn),x軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,P是上一動(dòng)點(diǎn),,Q的軌跡為.
(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程,
(2)若點(diǎn),直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線的交點(diǎn)為A,B,當(dāng)取最小值時(shí),求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,記棱長為1的正方體,以各個(gè)面的中心為頂點(diǎn)的正八面體為,以各面的中心為頂點(diǎn)的正方體為,以各個(gè)面的中心為頂點(diǎn)的正八面體為,……,以此類推得一系列的多面體,設(shè)的棱長為,則數(shù)列的各項(xiàng)和為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn),且在y軸上截得的弦MN的長為8.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)已知點(diǎn),長為的線段PQ的兩端點(diǎn)在軌跡C上滑動(dòng).當(dāng)軸是的角平分線時(shí),求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知與,的公共點(diǎn)分別為,,,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓相交于兩點(diǎn),其中在第一象限,是橢圓上一點(diǎn).
(1)記、是橢圓的左右焦點(diǎn),若直線過,當(dāng)到的距離與到直線的距離相等時(shí),求點(diǎn)的橫坐標(biāo);
(2)若點(diǎn)關(guān)于軸對(duì)稱,當(dāng)的面積最大時(shí),求直線的方程;
(3)設(shè)直線和與軸分別交于,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,過極點(diǎn)的兩射線、相互垂直,與曲線C分別相交于A、B兩點(diǎn)(不同于點(diǎn)O),且的傾斜角為銳角.
(1)求曲線C和射線的極坐標(biāo)方程;
(2)求△OAB的面積的最小值,并求此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖象在處取得極值4.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)于函數(shù),若存在兩個(gè)不等正數(shù),,當(dāng)時(shí),函數(shù)的值域是,則把區(qū)間叫函數(shù)的“正保值區(qū)間”.問函數(shù)是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com