分析 如圖所示,由題意可得:MF1⊥MF2,|MF2|=c,|MF1|=2a-c,|F1F2|=2c,利用勾股定理可得c2+(2a-c)2=4c2,即可得出.
解答 解:如圖所示,
由題意可得:MF1⊥MF2,
|MF2|=c,|MF1|=2a-c,|F1F2|=2c,
∴c2+(2a-c)2=4c2,
化為c2+2ac-2a2=0,即e2+2e-2=0,e∈(0,1).
解得e=$\sqrt{3}$-1.
故答案為:$\sqrt{3}-1$.
點(diǎn)評(píng) 本題考查了橢圓與圓的標(biāo)準(zhǔn)方程及其性質(zhì)、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{2\sqrt{6}}{5}$] | B. | [$\frac{\sqrt{3}}{2}$,1) | C. | [$\frac{2\sqrt{6}}{5}$,1) | D. | (0,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 21 | B. | -21 | C. | 41 | D. | 61 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com