【題目】在中,內(nèi)角,,所對的邊分別為,,,且.
(1)若,,求的值;
(2)若,且的面積,求和的值.
【答案】(1).(2),.
【解析】試題分析 :(Ⅰ)由余弦定理可以解出cosC;
(Ⅱ)用二倍角的余弦公式對方程進行化簡,結(jié)合所給的面積解出a=3,b=3,
試題解析:(1)由題意知,,
由余弦定理,得 .
(2)∵,由正弦定理可知,,
又因,故,
由于,
∴,從而,
解得,.
點晴:在處理解三角形問題時,要注意抓住題目所給的條件,當題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”。
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項和. (Ⅰ)若2Sn=3n+3.求{an}的通項公式;
(Ⅱ)若a1=1,an+1﹣an=2n(n∈N*),求Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲所示, 是梯形的高, , , ,現(xiàn)將梯形沿折起如圖乙所示的四棱錐,使得,點是線段上一動點.
(1)證明: 和不可能垂直;
(2)當時,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正數(shù)的等比數(shù)列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項和第5項,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從裝有個紅球和個黑球的口袋內(nèi)任取個球,那么互斥而不對立的兩個事件是( )
A. 至少有一個黑球與都是黑球 B. 至少有一個黑球與都是紅球
C. 至少有一個黑球與至少有個紅球 D. 恰有個黑球與恰有個黑球
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由長方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設(shè)休閑區(qū)的長A1B1=x米,求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬該如何設(shè)計?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)M=( ﹣1)( ﹣1)( ﹣1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是( )
A.[0, )
B.[ ,1)
C.[1,8)
D.[8,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com