3.玻璃盒子里裝有各色球12個,其中5紅、4黑、2白、1綠,從中任取1球.記事件A為“取出1個紅球”,事件B為“取出1個黑球”,事件C為“取出1個白球”,事件D為“取出1個綠球”.已知P(A)=$\frac{5}{12}$,P(B)=$\frac{1}{3}$,P(C)=$\frac{1}{6}$,P(D)=$\frac{1}{12}$.求:
(1)“取出1球?yàn)榧t球或黑球”的概率;
(2)“取出1球?yàn)榧t球或黑球或白球”的概率.

分析 解法一:應(yīng)用互斥事件的概率加法公式求出對應(yīng)的概率值即可;
解法二:應(yīng)用對立事件的概率公式求出對應(yīng)的概率值.

解答 解法一:應(yīng)用互斥事件的概率加法公式求概率;
(1)“取出1球?yàn)榧t球或黑球”的概率為
P(A∪B)=P(A)+P(B)
=$\frac{5}{12}$+$\frac{1}{3}$
=$\frac{3}{4}$;
(2)“取出1球?yàn)榧t球或黑球或白球”的概率為
P(A∪B∪C)=P(A)+P(B)+P(C)
=$\frac{5}{12}$+$\frac{1}{3}$+$\frac{1}{6}$
=$\frac{11}{12}$.
解法二:應(yīng)用對立事件的概率公式求概率;
(1)“取出1球?yàn)榧t球或黑球”的對立事件為“取出1球?yàn)榘浊蚧蚓G球”,
即A∪B的對立事件為C∪D,故“取出1球?yàn)榧t球或黑球”的概率為
P(A∪B)=1-P(C∪D)
=1-(P(C)+P(D))
=1-($\frac{1}{6}$+$\frac{1}{12}$)
=$\frac{3}{4}$;
(2)“取出1球?yàn)榧t球或黑球或白球”的對立事件為“取出1球?yàn)榫G球”,
即A∪B∪C的對立事件為D,
所以“取出1球?yàn)榧t球或黑球或白球”的概率為
P(A∪B∪C)=1-P(D)
=1-$\frac{1}{12}$
=$\frac{11}{12}$.

點(diǎn)評 本題考查了古典概型的概率計(jì)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)證明三倍角的余弦公式:cos3θ=4cos3θ-3cosθ;
(2)利用等式sin36°=cos54°,求sin18°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義$|{\begin{array}{l}a&b\\ c&d\end{array}}|$=ad-bc.若θ是銳角△ABC中最小內(nèi)角,函數(shù)f(θ)=$|{\begin{array}{l}{sinθ}&{cosθ}\\{-1}&1\end{array}}|$,則f(θ)的最大值是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在吸煙與患肺病這兩個分類變量的計(jì)算中,下列說法正確的是( 。
A.若K2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病
B.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤
C.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患有肺病
D.以上三種說法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.f′(x)是f(x)(x∈R)的導(dǎo)函數(shù),滿足f′(x)>f(x),若a>0則下列正確的是(  )
A.f(a)>eaf(0)B.f(a)<eaf(0)C.f(a)>f(0)D.f(a)<f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)x、y、z滿足x2+2y2+3z2=4,設(shè)T=xy+yz,則T的取值范圍是( 。
A.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$]B.[$-\frac{\sqrt{6}}{6}$,$\frac{2\sqrt{6}}{3}$]C.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$]D.[$-\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,a1=2,a1+a4=a5,若Sn>32,則n的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)y=f(x+1)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),在區(qū)間(-∞,0)是減函數(shù),且圖象過點(diǎn)(1,0),則不等式(x-1)f(x)≤0的解集為(-∞,0]∪[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為2,且a1,S2,S4成等比數(shù)列,則數(shù)列{an}的通項(xiàng)公式an等于(  )
A.2n+1B.2n-3C.2n-1D.2n

查看答案和解析>>

同步練習(xí)冊答案