【題目】如圖,在四棱柱中,底面是正方形,平面平面,.過頂點,的平面與棱,分別交于兩點.

(Ⅰ)求證:;

(Ⅱ)求證:四邊形是平行四邊形;

(Ⅲ)若,試判斷二面角的大小能否為?說明理由.

【答案】1)證明見解析;(2)證明見解析;(3)不能為.

【解析】

1)由平面平面,可得平面,從而證明;

2)由平面與平面沒有交點,可得不相交,又共面,所以,同理可證,得證;(3)作于點,延長于點,連接,根據(jù)三垂線定理,確定二面角的平面角,若,由大角對大邊知,兩者矛盾,故二面角的大小不能為.

1)由平面平面,平面平面,

,所以平面,

平面,所以;

2)依題意都在平面上,

因此平面平面,

平面,平面,

平面與平面平行,即兩個平面沒有交點,

不相交,又共面,

所以,同理可證,

所以四邊形是平行四邊形;

3)不能.如圖,作于點,延長于點,連接,

,,

所以平面,則平面,又,

根據(jù)三垂線定理,得到,所以是二面角的平面角,

,則是等腰直角三角形,,

所以中,由大角對大邊知,

所以,這與上面相矛盾,

所以二面角的大小不能為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校近幾年來通過書香校園主題系列活動,倡導學生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是(

A.2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長

B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7

C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3

D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的圖象在點處的切線平行于軸,求函數(shù)上的最小值;

2)若關于的方程上有兩個解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)在點P(1,)處的切線方程;

(2)若關于x的不等式有且僅有三個整數(shù)解,求實數(shù)t的取值范圍;

(3)存在兩個正實數(shù)滿足,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加某個知識答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學各自從備選的5道不同題中隨機抽出3道題進行答題,答對一題加10分,答錯一題(不答視為答錯)減5分,已知甲能答對備選5道題中的每道題的概率都是,乙恰能答對備選5道題中的其中3道題;第一輪答題完畢后進行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對,繼續(xù)答下一題…,直到答錯,則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對繼續(xù)答第2題,如果第2題也答對,繼續(xù)答第3題,直到他答錯則換成乙坐莊開始答下一題,…直到乙答錯再換成甲坐莊答題,依次類推兩人共計答完20道題游戲結(jié)束,假設由第一輪答題得分期望高的同學在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(最先答題的同學)作答的概率為),其中,已知供甲乙回答的20道題中,甲,乙兩人答對其中每道題的概率都是,如果某位同學有機會答第道題且回答正確則該同學加10分,答錯(不答視為答錯)則減5分,甲乙答題相互獨立;兩輪答題完畢總得分高者勝出.回答下列問題

1)請預測第二輪最先開始作答的是誰?并說明理由

2)①求第二輪答題中;

②求證為等比數(shù)列,并求)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了調(diào)查學生數(shù)學素養(yǎng)的情況,從初中部、高中部各隨機抽取100名學生進行測試.初中部的100名學生的成績(單位:分)的頻率分布直方圖如圖所示.

高中部的100名學生的成績(單位:分)的頻數(shù)分布表如下:

測試分數(shù)

頻數(shù)

5

20

35

25

15

把成績分為四個等級:60分以下為級,60分(含60)到80分為級,80分(含80)到90分為級,90分(含90)以上為.

1)根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有99%的把握認為學生數(shù)學素養(yǎng)成績“級”與“所在級部”有關?

不是

合計

初中部

高中部

合計

注:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

2)若這個學校共有9000名高中生,用頻率估計概率,用樣本估計總體,試估計這個學校的高中生的數(shù)學素養(yǎng)成績?yōu)?/span>級的人數(shù),并估計數(shù)學素養(yǎng)成績的平均分(用組中值代表本組分數(shù));

3)把初中部的級同學編號為,,,,,高中部的級同學編號為,,,,從初中部級、高中部級中各選一名同學,求這兩名同學的編號奇偶性相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列4個說法中正確的有(

①命題,則的逆否命題為;

②若,則

③若復合命題:為假命題,則p,q均為假命題;

的充分不必要條件.

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為等差數(shù)列,,分別是下表第一、二、三行中的某一個數(shù),且,中的任何兩個數(shù)都不在下表的同一列.

第一列

第二列

第三列

第一行

第二行

4

6

9

第三行

12

8

7

請從①,②,的三個條件中選一個填入上表,使?jié)M足以上條件的數(shù)列存在;并在此存在的數(shù)列中,試解答下列兩個問題

1)求數(shù)列的通項公式;

2)設數(shù)列滿足,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為

1)求橢圓的方程.

2)設直線過點且與橢圓交于兩點.過點作直線的垂線,垂足為.證明直線過定點.

查看答案和解析>>

同步練習冊答案