【題目】已知函數(shù)y=f(x)的周期為2,當x∈[0,2時,f(x)=2|x-1|-1,如果g(x)=f(x)-log3|x-2|,則函數(shù)y=g(x)的所有零點之和為( 。
A. 6 B. 8 C. 10 D. 12
【答案】D
【解析】
分別作出函數(shù)y=f(x)、y=h(x)=log5|x-1|的圖象,結(jié)合函數(shù)的對稱性,即可求得結(jié)論.
解:當x∈[0,2]時,f(x)=2|x-1|-1,函數(shù)y=f(x)的周期為2,可作出函數(shù)f(x)的圖象;
圖象關(guān)于y軸對稱的偶函數(shù)y=log3|x|向右平移2個單位得到函數(shù)y=log3|x-2|,
則y=h(x)=log3|x-2|關(guān)于x=2對稱,可作出函數(shù)的圖象如圖所示;
函數(shù)y=g(x)的零點,即為函數(shù)圖象交點橫坐標,
當x>5時,y=log3|x-2|>1,此時函數(shù)圖象無交點,
又兩函數(shù)在[2,5]上有3個交點,由對稱性知,
它們在[-1,2]上也有3個交點,且它們關(guān)于直線x=2對稱,
所以函數(shù)y=g(x)的所有零點之和為
3×4=12.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD交于點O,點E、F分別在AD,CD上,AE=CF,EF交BD于點H,將△DEF沿EF折到△D′EF的位置.
(1)證明:AC⊥HD′;
(2)若AB=5,AC=6,AE= ,OD′=2 ,求五棱錐D′﹣ABCFE體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=lnx﹣x+1.
(1)討論f(x)的單調(diào)性;
(2)證明當x∈(1,+∞)時,1< <x;
(3)設c>1,證明當x∈(0,1)時,1+(c﹣1)x>cx .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0對任意的x∈R都成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設圓x2+y2+2x﹣15=0的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(1)證明|EA|+|EB|為定值,并寫出點E的軌跡方程;
(2)設點E的軌跡為曲線C1 , 直線l交C1于M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是.假設各局比賽結(jié)果相互獨立.
(1)分別求甲隊以3:0,3:1,3:2獲勝的概率;
(2)若比賽結(jié)果為3:0或3:1,則勝利方得3分、對方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對方得1分.求甲隊得分X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的三個頂點為A(﹣3,0),B(2,1),C(﹣2,3),求:
(1)BC所在直線的方程;
(2)BC邊上中線AD所在直線的方程;
(3)BC邊上的垂直平分線DE的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了比較注射,兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗,將這200只家兔隨機地分成兩組,毎組100只,其中一組注射藥物,另一組注射藥物.表1和表2分別是注射藥物和后的試驗結(jié)果.(皰疹面積單位:)
表1:注射藥物后皮膚皰疹面積的頻數(shù)分布表
表2:注射藥物后皮膚皰疹面積的頻數(shù)分布表
(1)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大;
(2)完成下面列聯(lián)表,并回答能否有的把握認為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.
表3:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com