已知函數(shù)f(x)=
1
3
x3+a2x2
+ax+b,當(dāng)x=-1時(shí)函數(shù)f(x)的極值為-
7
12
,則a=
-
1
2
-
1
2
分析:由題意可得
f(-1)=1-2a2+a=0
f(-1)=-
1
3
+2a2-a+b=-
7
12
,解得a,再驗(yàn)證即可.
解答:解:f′(x)=x2+2a2x+a.
∵當(dāng)x=-1時(shí)函數(shù)f(x)的極值為-
7
12
,
f(-1)=1-2a2+a=0
f(-1)=-
1
3
+2a2-a+b=-
7
12
,
解得
a=1
b=-
5
4
a=-
1
2
b=-
5
4

經(jīng)驗(yàn)證a=1時(shí),函數(shù)f(x)具有單調(diào)性,無極值,應(yīng)舍去;
因此a=-
1
2

故答案為-
1
2
點(diǎn)評:熟練掌握導(dǎo)數(shù)的運(yùn)算法則、利用導(dǎo)數(shù)研究函數(shù)的極值的方法等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是(  )

查看答案和解析>>

同步練習(xí)冊答案