【題目】在四棱錐中,為等邊三角形,四邊形為矩形,為的中點(diǎn),.
證明:平面平面.
設(shè)二面角的大小為,求的取值范圍.
【答案】證明見解析;.
【解析】
連接,根據(jù)題意可證出平面,,進(jìn)而證出平面,即可證出平面平面;
建立空間直角坐標(biāo)系,寫出平面的法向量為,平面的法向量為,進(jìn)而利用公式寫出,進(jìn)而得出結(jié)果.
解:證明:連接,因?yàn)?/span>為等邊三角形,為的中點(diǎn),
所以,
又因?yàn)?/span>,,
所以平面,.
因?yàn)樗倪呅?/span>為矩形,所以,,
所以平面.
因?yàn)?/span>平面,所以平面平面.
以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
設(shè),,
則,,,
由空間向量的坐標(biāo)運(yùn)算可得
,,.
設(shè)平面的法向量為,
則,代入可得
令,,,所以.
設(shè)平面的法向量為,
則,代入可得
令,,,所以.
二面角的大小為,由圖可知,二面角為銳二面角,
所以,
當(dāng)趨于時(shí),,則,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求直線的直角坐標(biāo)方程和曲線的普通方程;
(Ⅱ)求曲線上的動(dòng)點(diǎn)到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1在正方形中,,是的中點(diǎn),把沿折疊,使為等邊三角形,得到如圖2所示的幾何體.
(Ⅰ)證明:;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中,,,、分別是、的中點(diǎn),將沿折起連結(jié)、,得到多面體.
(1)證明:在多面體中,;
(2)在多面體中,當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;
(3)當(dāng)時(shí),若方程在區(qū)間上有唯一解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),有下列四個(gè)命題:
①函數(shù)是奇函數(shù);
②函數(shù)在是單調(diào)函數(shù);
③當(dāng)時(shí),函數(shù)恒成立;
④當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn),
其中正確的是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,,分別是其左、右焦點(diǎn),且過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”; 乙說(shuō):“ 作品獲得一等獎(jiǎng)”;
丙說(shuō):“ 兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,是的中點(diǎn),是上一點(diǎn),且
(1)求證:平面;
(2)若求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com