【題目】某公司的營銷部門對某件商品在網(wǎng)上銷售情況進(jìn)行調(diào)查,發(fā)現(xiàn)當(dāng)這件商品每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過統(tǒng)計得到以下表:
(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品銷量(百件)與返還點數(shù)之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測若返回6個點時該商品每天銷量;
(2)該公司為了在購物節(jié)期間對所有商品價格進(jìn)行新一輪調(diào)整,隨機(jī)抽查了上一年購物節(jié)期間60名網(wǎng)友的網(wǎng)購金額情況,得到如下數(shù)據(jù)統(tǒng)計表:
網(wǎng)購金額 (單位:千元) | 合計 | ||||||
頻數(shù) | 3 | 9 | 9 | 15 | 18 | 6 | 60 |
若網(wǎng)購金額超過2千元的顧客定義為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過2千元的顧客定義為“非網(wǎng)購達(dá)人”.該營銷部門為了進(jìn)步了解這60名網(wǎng)友的購物體驗,從“非網(wǎng)購達(dá)人”、“網(wǎng)購達(dá)人”中用分層抽樣的方法確定10人,若需從這10人中隨機(jī)選取3人進(jìn)行問卷調(diào)查.設(shè)為選取的3人中“網(wǎng)購達(dá)人”的人數(shù),求的分布列和數(shù)學(xué)期望.
參考公式及數(shù)據(jù):①,;②.
【答案】(1),返回6個點時該商品每天銷量約為件;(2)分布列見解析,
【解析】
(1)利用已知條件,求出線性回歸的對稱中心的坐標(biāo),然后求解回歸直線方程,,通過返回6個點時求解該商品每天銷量;
(2)首先求出“非網(wǎng)購達(dá)人”、“網(wǎng)購達(dá)人”的人數(shù),再求出分別抽出的人數(shù),最后列出分布列求出數(shù)學(xué)期望;
解:(1)易知,,
,
,
,
則關(guān)于的線性回歸方程為,
當(dāng)時,,即返回6個點時該商品每天銷量約為件
(2)由統(tǒng)計表可知,“非網(wǎng)購達(dá)人”有人、“網(wǎng)購達(dá)人”有人;現(xiàn)按照分層抽樣從中抽取人,則“非網(wǎng)購達(dá)人”被抽取的有(人)、“網(wǎng)購達(dá)人”被抽取的有(人);
現(xiàn)需從這10人中隨機(jī)選取3人進(jìn)行問卷調(diào)查.設(shè)為選取的3人中“網(wǎng)購達(dá)人”的人數(shù),則的可能取值為、、、,
,,,,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,,若的單調(diào)區(qū)間;
(2)當(dāng)時,若存在唯一的零點,且,其中,求.
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱柱中,平面是線段上的動點,是線段上的中點.
(Ⅰ)證明:;
(Ⅱ)若,且直線所成角的余弦值為,試指出點在線段上的位置,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;并估計,以運動為主的休閑方式的人的比例;
(2)能否在犯錯誤的概率不超過0.025的前提下,認(rèn)為性別與休閑方式有關(guān)系?
附表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為的正方體中,點、、分別為棱、、的中點,經(jīng)過、、三點的平面為,平面被此正方體所截得截面圖形的周長為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程在上恰有3個解,存在,使不等式成立.
(1)若為真命題,求正數(shù)的取值范圍;
(2)若為真命題,且為假命題,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了檢查生產(chǎn)產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標(biāo)值.若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.下表是甲流水線樣本的頻數(shù)分布表,下圖是乙流水線樣本的頻率分布直方圖.
甲流水線樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | 頻數(shù) |
9 | |
10 | |
17 | |
8 | |
6 |
乙流水線樣本的頻率分布直方圖
(1)根據(jù)圖形,估計乙流水線生產(chǎn)的產(chǎn)品的該項質(zhì)量指標(biāo)值的中位數(shù);
(2)設(shè)該企業(yè)生產(chǎn)一件合格品獲利100元,生產(chǎn)一件不合格品虧損50元,若某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了1000件產(chǎn)品,若將頻率視為概率,則該企業(yè)本月的利潤約為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com