【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.

1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;并估計,以運動為主的休閑方式的人的比例;

2)能否在犯錯誤的概率不超過0.025的前提下,認(rèn)為性別與休閑方式有關(guān)系?

附表:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2.

【答案】1)列聯(lián)表見解析,1531;(2)能

【解析】

1)由題設(shè)所給的數(shù)據(jù)可得列聯(lián)表,然后求出以運動為主的休閑方式的人的比例;

2)先假設(shè)休閑與性別無關(guān),求K2,再結(jié)合題意即可得解.

解:(1)由所給的數(shù)據(jù)得到列聯(lián)表:

休閑方式

性別

看電視

運動

合計

43

27

70

21

33

54

合計

64

60

124

∴以運動為主要的休閑方式的比例為,即1531;

2)假設(shè)休閑與性別無關(guān),

6.2015.024,

所以在犯錯誤的概率不超過0.025的前提下認(rèn)為休閑方式與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2002年8月在北京召開的國際數(shù)學(xué)家大會會標(biāo)如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一大正方形,設(shè)直角三角形中較小的銳角為,大正方形的面積是1,小正方形的面積是.若,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線(其中)的焦點的直線交拋物線于兩點,且兩點的縱坐標(biāo)之積為

(1)求拋物線的方程;

(2)當(dāng)時,求的值;

(3)對于軸上給定的點(其中),若過點兩點的直線交拋物線的準(zhǔn)線點,求證:直線軸交于一定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時,函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCDPDDC,點EPC的中點,作EFPBPB于點F.

1)求證:PA∥平面BDE

2)求證:PB⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的營銷部門對某件商品在網(wǎng)上銷售情況進(jìn)行調(diào)查,發(fā)現(xiàn)當(dāng)這件商品每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過統(tǒng)計得到以下表:

1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品銷量(百件)與返還點數(shù)之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測若返回6個點時該商品每天銷量;

2)該公司為了在購物節(jié)期間對所有商品價格進(jìn)行新一輪調(diào)整,隨機抽查了上一年購物節(jié)期間60名網(wǎng)友的網(wǎng)購金額情況,得到如下數(shù)據(jù)統(tǒng)計表:

網(wǎng)購金額

(單位:千元)

合計

頻數(shù)

3

9

9

15

18

6

60

若網(wǎng)購金額超過2千元的顧客定義為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過2千元的顧客定義為“非網(wǎng)購達(dá)人”.該營銷部門為了進(jìn)步了解這60名網(wǎng)友的購物體驗,從“非網(wǎng)購達(dá)人”、“網(wǎng)購達(dá)人”中用分層抽樣的方法確定10人,若需從這10人中隨機選取3人進(jìn)行問卷調(diào)查.設(shè)為選取的3人中“網(wǎng)購達(dá)人”的人數(shù),求的分布列和數(shù)學(xué)期望.

參考公式及數(shù)據(jù):①;②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,離心率為,是橢圓上位于第一象限內(nèi)的任意一點,為坐標(biāo)原點,關(guān)于的對稱點為,,圓.

1)求橢圓和圓的標(biāo)準(zhǔn)方程;

2)過點與圓相切于點,使得點,點的兩側(cè).求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,其中.

(1)當(dāng)時,寫出函數(shù)的單調(diào)區(qū)間(不要求證明);

(2)若對于任意的,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案