5.設(shè)a=log${\;}_{\frac{1}{3}}$6,b=($\frac{1}{4}$)0.8,c=lnπ,下列結(jié)論正確的是(  )
A.a<b<cB.a<c<bC.c<a<bD.b<a<c

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=log${\;}_{\frac{1}{3}}$6<0,b=($\frac{1}{4}$)0.8∈(0,1),c=lnπ>1,
∴c>b>a,
故選:A.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列五個命題中正確命題的個數(shù)是( 。
(1)對于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1<0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為$\widehaty=1.23x+0.08$;
(4)已知正態(tài)總體落在區(qū)間(0.7,+∞)的概率是0.5,則相應(yīng)的正態(tài)曲線f(x)在x=0.7時,達到最高點;
(5)曲線y=x2與y=x所圍成的圖形的面積是$S=\int_0^1{({x-{x^2}})dx}$.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在△ABC中,$\overrightarrow{BF}=2\overrightarrow{FC}$,$\overrightarrow{AM}=\overrightarrow{MF}=\overrightarrow{FN}$.
(1)用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{AF}$;
(2)若$\overrightarrow{AB}⊥\overrightarrow{AC}$,$|{\overrightarrow{AB}}|=\sqrt{2}|{\overrightarrow{AC}}|$,求證:$\overrightarrow{AN}⊥\overrightarrow{BC}$;
(3)若$\overrightarrow{BM}•\overrightarrow{BC}=|{\overrightarrow{MF}}|=1$,求$\overrightarrow{BA}•\overrightarrow{BN}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=-x3+3x+2的單調(diào)遞增區(qū)間是(  )
A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線y2=2px(p>0)的準線與圓(x-3)2+y2=16相切,則該拋物線的焦點到準線的距離為( 。
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(-8)${\;}^{\frac{1}{3}}$+π0+lg4+lg25=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)0$\sqrt{2}$-$\sqrt{2}$0
(Ⅰ)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知A為銳角△ABC的內(nèi)角,且 sinA-2cosA=a(a∈R).
(Ⅰ)若a=-1,求tanA的值;
(Ⅱ)若a<0,且函數(shù)f(x)=(sinA)•x2-(2cosA)•x+1在區(qū)間[1,2]上是增函數(shù),求sin2A-sinA•cosA的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.將y=$\sqrt{2}$sin(2x+$\frac{π}{3}$)的圖象向右平移φ(0<φ<π)個單位得到函數(shù)y=2sinx(sinx-cosx)-1的圖象,則φ=$\frac{13π}{24}$.

查看答案和解析>>

同步練習冊答案