下面幾種推理過(guò)程是演繹推理的是( 。
A、某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過(guò)50人
B、兩條直線平行,同旁?xún)?nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁?xún)?nèi)角,則∠A+∠B=180°
C、由平面三角形的性質(zhì),推測(cè)空間四面體性質(zhì)
D、在數(shù)列{an}中a1=1,an=
1
2
(an-1+
1
an-1
)(n≥2)
,由此歸納出{an}的通項(xiàng)公式
分析:演繹推理是由普通性的前提推出特殊性結(jié)論的推理.其形式在高中階段主要學(xué)習(xí)了三段論:大前提、小前提、結(jié)論,由此對(duì)四個(gè)命題進(jìn)行判斷得出正確選項(xiàng).
解答:解:A選項(xiàng)“高三1班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過(guò)50人”是歸納推理;故錯(cuò);
B選項(xiàng)是演繹推理,大前提是“兩條直線平行,同旁?xún)?nèi)角互補(bǔ),”,小前提是“∠A與∠B是兩條平行直線的同旁?xún)?nèi)角”,結(jié)論是“∠A+∠B=180°”,故正確;
C選項(xiàng)“由平面三角形的性質(zhì),推出空間四邊形的性質(zhì)”是類(lèi)比推理;故錯(cuò);
D選項(xiàng)“在數(shù)列{an}中,a1=1,an=
1
2
(an-1+
1
an-1
)(n≥2)
,通過(guò)計(jì)算a2,a3,a4由此歸納出{an}的通項(xiàng)公式”是歸納推理.故錯(cuò).
綜上得,B選項(xiàng)正確
故選B.
點(diǎn)評(píng):本題考點(diǎn)是進(jìn)行簡(jiǎn)單的演繹推理、數(shù)列的應(yīng)用等,解題的關(guān)鍵是熟練掌握演繹推理的定義及其推理形式,演繹推理是由普通性的前提推出特殊性結(jié)論的推理.演繹推理主要形式有三段論,其結(jié)構(gòu)是大前提、小前提、結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面幾種推理過(guò)程是演繹推理的是( 。
A、兩條直線平行,同旁?xún)?nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁?xún)?nèi)角,則∠A+∠B=180°
B、某校高二(1)班有55人,高二(2)班有52人,由此得高二所有班人數(shù)超過(guò)50人
C、由平面三角形的性質(zhì),推出空間四邊形的性質(zhì)
D、在數(shù)列{an}中,a1=1,an=
1
2
(an-1+
1
an-1
)(n≥2)
,通過(guò)計(jì)算a2,a3,a4由此歸納出{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面幾種推理過(guò)程是演繹推理的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面幾種推理過(guò)程是演繹推理的是(  )
A.在數(shù)列{an}中a1=1,an=
1
2
(an-1+
1
an-1
)(n≥2)
,由此得出{an}的通項(xiàng)公式.
B.大足中學(xué)高一一班有63人,二班65人,三班62人,由此得高一所有班人數(shù)都超過(guò)60人.
C.兩條直線平行,內(nèi)錯(cuò)角相等,如果∠A與∠B是兩條平行直線的內(nèi)錯(cuò)角,則∠A=∠B.
D.由平面內(nèi)正三角形的性質(zhì),推知空間正四面體的性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年重慶市大足中學(xué)高二(下)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

下面幾種推理過(guò)程是演繹推理的是( )
A.在數(shù)列{an}中,由此得出{an}的通項(xiàng)公式.
B.大足中學(xué)高一一班有63人,二班65人,三班62人,由此得高一所有班人數(shù)都超過(guò)60人.
C.兩條直線平行,內(nèi)錯(cuò)角相等,如果∠A與∠B是兩條平行直線的內(nèi)錯(cuò)角,則∠A=∠B.
D.由平面內(nèi)正三角形的性質(zhì),推知空間正四面體的性質(zhì).

查看答案和解析>>

同步練習(xí)冊(cè)答案