已知PQ分別在圓和橢圓上,則| PQ |的最大值是(   

(A)        (B)      (C) 4       (D) 5

 

答案:A
提示:

(其中).

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)與向量、圓交匯.例5:已知F1、F2分別為橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點,其中F1也是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知點P(1,3)和圓O:x2+y2=b2,過點P的動直線l與圓O相交于不同的兩點A,B,在線段AB上取一點Q,滿足:
AP
=-λ
PB
AQ
QB
,(λ≠0且λ≠±1).問點Q是否總在某一定直線上?若在,求出這條直線,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

已知PQ分別在圓和橢圓上,則| PQ |的最大值是(   

(A)        (B)      (C) 4       (D) 5

 

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省哈爾濱市第六中學2012屆高三第四次模擬考試數(shù)學理科試題 題型:044

已知F1,F(xiàn)2分別為橢圓的上下焦點,其中F1也是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=

(1)求橢圓C1的方程;

(2)已知點P(1,3)和圓O:x2+y2=b2,過點P的動直線l與圓O相交于不同的兩點A,B,在線段AB上取一點Q,滿足且λ≠±1.

求證:點Q總在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省執(zhí)信中學2012屆高三下學期第三次模擬數(shù)學理科試題 題型:047

如圖,已知F1、F2分別為橢圓的上、下焦點,其中F1也是拋物線C2∶x2=4y的焦點,點M是C1與C2在第二象限的交點,且

(I)求橢圓C1的方程;

(II)已知點P(1,3)和圓O∶x2+y2=b2,過點P的動直線l與圓O相交于不同的兩點A,B,在線段AB上取一點Q,滿足∶,(λ≠0且λ≠±1),求證∶點Q總在某條定直線上.

查看答案和解析>>

同步練習冊答案