分析 用換元法,設(shè)t=2x,求出t的取值范圍,再把函數(shù)f(x)化為f(t),求f(t)的值域即可.
解答 解:∵4x-5×2x+6≤0,
∴(2x)2-5×2x+6≤0,
設(shè)t=2x,則原不等式化為t2-5t+6≤0,
解得2≤t≤3;
又函數(shù)f(x)=2x-2-x=2x-$\frac{1}{{2}^{x}}$,
∴f(t)=t-$\frac{1}{t}$(t∈[2,3]),
∴f′(t)=1+$\frac{1}{{t}^{2}}$>0,
∴f(t)在t∈[2,3]上是增函數(shù),
∴f(2)≤f(t)≤f(3),
即$\frac{3}{2}$≤f(t)≤$\frac{8}{3}$;
∴f(x)的值域是[$\frac{3}{2}$,$\frac{8}{3}$].
故答案為:[$\frac{3}{2}$,$\frac{8}{3}$].
點評 本題考查了不等式的解法和應(yīng)用問題,也考查了求函數(shù)值域的應(yīng)用問題,是綜合性題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | $(0,\frac{1}{9})∪(9,+∞)$ | C. | $(0,\frac{1}{9})∪(1,9)$ | D. | $(\frac{1}{9},9)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=($\frac{1}{3}$)x | C. | y=x${\;}^{\frac{1}{2}}$ | D. | y=x2-2x-15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)的單調(diào)遞減區(qū)間為(-∞,1),(1,+∞) | B. | 函數(shù)的單調(diào)遞減區(qū)間為(-∞,1]∪(1,+∞) | ||
C. | 函數(shù)的單調(diào)遞增區(qū)間為(-∞,1),(1,+∞) | D. | 函數(shù)的單調(diào)遞增區(qū)間為(-∞,1]∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{{x}^{2}}$ | B. | y=$\root{3}{|x{|}^{3}}$ | ||
C. | y=lnex | D. | y=a${\;}^{lo{g}_{a}x}$(a>0且a≠1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com