已知點A(4,4),若拋物線y2=2px的焦點與橢圓=1的右焦點重合,該拋物線上有一點M,它在y軸上的射影為N,則|MA|+|MN|的最小值為___________。
拋物線的焦點坐標為,橢圓的右焦點坐標為,所以,解得。則拋物線的準線方程為,所以,從而。

由圖可知,當點是直線與拋物線的交點時最小,此時,從而可得的最小值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓()的左焦點軸的垂線交橢圓于點,為右焦點,若,則橢圓的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左、右焦點分別為,點在橢圓上,當時,的面積為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓中心在原點,焦點在軸上,離心率,過橢圓的右焦點且垂直于長軸的弦長為
(1)求橢圓的標準方程;
(2)為橢圓左頂點,為橢圓上異于的任意兩點,若,求證:直線過定點并求出定點坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點(5,0)的橢圓與雙曲線有共同的焦點,
則該橢圓的短軸長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右頂點為,上頂點為,直線與橢圓交于不同的兩點,若是以為直徑的圓上的點,當變化時,點的縱坐標的最大值為
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為的直線與橢圓交于不同的兩點,是否存在,使得向量共線?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知AB是過橢圓=1左焦點F1的弦,且,其中 是橢圓的右焦點,則弦AB的長是_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的兩焦點為,點滿足, 則
的取值范圍為_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的右焦點到直線的距離是   ▲   

查看答案和解析>>

同步練習冊答案