分析 確定函數(shù)F(a,b)=$\frac{1}{2}$(a+b-|a-b|)的含義,表示出G(x)=F(f(x),g(x)),根據(jù)一次函數(shù)與二次函數(shù)的性質(zhì)可求函數(shù)的最大值.
解答 解:∵F(a,b)=$\frac{1}{2}$(a+b-|a-b|)=$\left\{\begin{array}{l}b,a≥b\\ a,a<b\end{array}\right.$,
函數(shù)f(x)=-x2+2x+3,g(x)=x+1,
∴G(x)=F(f(x),g(x))=$\left\{\begin{array}{l}x+1,-1≤x≤2\\-{x}^{2}+2x+3,x<-1,或x>2\end{array}\right.$.
∵當-1≤x≤2時,G(x)=x+1∈[0,3],
當x>2或x<-1時,G(x)=-x2+2x+3=-(x-1)2+4<3,
綜上可得,函數(shù)G(x)的最大值為3,
故答案為:3.
點評 本題主要考查了函數(shù)的最值的求解,解題的關(guān)鍵是根據(jù)題目中的定義求出函數(shù)H(x)的解析式.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {(0,-1),(1,0)} | B. | {0,1} | C. | {-1,0} | D. | {y|y≥-1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com