【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為件.

1)將該產(chǎn)品的利潤(rùn)萬元表示為促銷費(fèi)用萬元的函數(shù);

2)促銷費(fèi)用投入多少萬元時(shí),該公司的利潤(rùn)最大?

【答案】1;

2)當(dāng)時(shí),促銷費(fèi)用投入2萬元時(shí),該公司的利潤(rùn)最大;當(dāng)時(shí),促銷費(fèi)用投入萬元時(shí),該公司的利潤(rùn)最大.

【解析】

1)根據(jù)產(chǎn)品的利潤(rùn)銷售額產(chǎn)品的成本建立函數(shù)關(guān)系;

2)利用導(dǎo)數(shù)基本不等式可求出該函數(shù)的最值,注意等號(hào)成立的條件.

解:(1)由題意知,,

代入化簡(jiǎn)得:

(2),

當(dāng)且僅當(dāng),即時(shí),上式取等號(hào);

當(dāng)時(shí),促銷費(fèi)用投入2萬元時(shí),該公司的利潤(rùn)最大;

,,

時(shí),函數(shù)在,上單調(diào)遞增,

時(shí),函數(shù)有最大值.即促銷費(fèi)用投入萬元時(shí),該公司的利潤(rùn)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)無窮數(shù)列分別滿足,

其中,設(shè)數(shù)列的前項(xiàng)和分別為,

1)若數(shù)列都為遞增數(shù)列,求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿足:存在唯一的正整數(shù)),使得,稱數(shù)列墜點(diǎn)數(shù)列

若數(shù)列“5墜點(diǎn)數(shù)列,求

若數(shù)列墜點(diǎn)數(shù)列,數(shù)列墜點(diǎn)數(shù)列,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面為正方形,且該四棱錐的每條棱長(zhǎng)均為,設(shè)BC,CD的中點(diǎn)分別為E,F,點(diǎn)G在線段PA上,如圖.

1)證明:;

2)當(dāng)平面PEF時(shí),求直線GC和平面PEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過點(diǎn)和點(diǎn).

1)求函數(shù)的最大值與最小值;

2)將函數(shù)的圖象向左平移個(gè)單位后,得到函數(shù)的圖象;已知點(diǎn),若函數(shù)的圖象上存在點(diǎn),使得,求函數(shù)圖象的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若時(shí),直線是曲線的一條切線,求b的值;

2)若,且上恒成立,求a的取值范圍;

3)令,且在區(qū)間上有零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,并且,,數(shù)列滿足:,記數(shù)列的前項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

3)記集合,若的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左,右焦點(diǎn)分別為,,點(diǎn)P為雙曲線C右支上異于頂點(diǎn)的一點(diǎn),的內(nèi)切圓與x軸切于點(diǎn),且直線經(jīng)過線段的中點(diǎn)且垂直于線段,則雙曲線C的方程為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),是坐標(biāo)軸上兩點(diǎn),動(dòng)點(diǎn)滿足直線的斜率之積為(其中為常數(shù),且.的軌跡為曲線.

1)求的方程,并說明是什么曲線;

2)過點(diǎn)斜率為的直線與曲線交于點(diǎn),點(diǎn)在曲線上,且,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù).

(1)當(dāng)時(shí),的最小值;

(2)討論函數(shù)的奇偶性,并說明理由;

(3)當(dāng)時(shí),是否存在實(shí)數(shù),使得不等式對(duì)任意恒成立?若存在,求出所有滿足條件的的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案