如圖所示的莖葉圖記錄了甲、乙兩個(gè)小組(每小組4人)在期末考試中的數(shù)學(xué)成績(jī).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以a表示.已知甲、乙兩個(gè)小組的數(shù)學(xué)成績(jī)的平均分相同.
(1)求a的值;
(2)求乙組四名同學(xué)數(shù)學(xué)成績(jī)的方差.
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差,莖葉圖
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(1)由莖葉圖以及甲、乙兩小組的數(shù)學(xué)成績(jī)平均分相等,求出a的值;
(2)求出乙組四名同學(xué)數(shù)學(xué)成績(jī)的平均數(shù)
.
x
,再計(jì)算方差s2
解答: 解:(1)根據(jù)莖葉圖,知甲、乙兩個(gè)小組的數(shù)學(xué)成績(jī)的平均分相等,
87+89+96+96
4
=
87+(90+a)+93+95
4

解得a=3.
(2)乙組四名同學(xué)數(shù)學(xué)成績(jī)的平均數(shù)是
.
x
=
87+93+93+95
4
=92;
∴方差s2=
1
4
[(87-92)2+(93-92)2+(93-92)2+(95-92)2]=9.
點(diǎn)評(píng):本題考查了莖葉圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)用莖葉圖提供的數(shù)據(jù)求平均數(shù)和方差,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an }的前n項(xiàng)和為Sn,執(zhí)行如圖的程序框圖,則輸出的M一定滿(mǎn)足( 。
A、Sn=nM
B、Sn=
nM
2
C、Sn≤nM
D、Sn≥nM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+5
x+2

(1)若x∈[1,10],求f(x)的取值范圍;
(2)證明函數(shù)f(x)的圖象關(guān)于(-2,1)對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:
a
=(2cosx,sinx),
b
=(
3
cosx,2cosx),設(shè)函數(shù)f(x)=
a
b
-
3
(x∈R)
求:
(1)f(x)的最小正周期;
(2)f(x)的最大值以及取得最大值時(shí)x的值;
(3)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=3sin(ωx+
π
6
),ω>0,x∈(-∞,+∞),且f(x)以
π
2
為最小正周期.
(1)求f(x)的解析式;
(2)已知f(
α
4
+
π
12
)=
9
5
,求sinα的值.
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得:
10
i-1
xi=80,
10
i-1
yi=20,
10
i-1
xiyi=184,
10
i-1
x
2
i
=720.
(Ⅰ)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線(xiàn)性回歸方程
y
=
b
x+
a
;
(Ⅱ)若該居民區(qū)某家庭月收入為8000元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.附:線(xiàn)性回歸方程
y
=
b
x+
a
中,
b
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
x
2
i
-n
-2
x
a
=
.
y
-
b
.
x
,其中
.
x
.
y
為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2sin(2x+
π
3
)最小正周期,單調(diào)遞增區(qū)間,對(duì)稱(chēng)軸,對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求f(x)單調(diào)增區(qū)間.
(3)若x∈[
π
4
,
π
2
],求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(cosx,-sinx),
n
=(cosx,sinx-2
3
cosx),x∈R,令f(x)=
m
n

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
π
4
]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案