已知數(shù)列,,…,,…,Sn為該數(shù)列的前n項(xiàng)和,
(1)計(jì)算S1,S2,S3,S4,
(2)根據(jù)計(jì)算結(jié)果,猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法進(jìn)行證明.
【答案】分析:(1)按照數(shù)列和的定義計(jì)算即可
(2)按照數(shù)學(xué)歸納法的證明步驟進(jìn)行證明.
解答:解:(1)S1==
S2==,
S3=S2+=,
S4=S3+=
推測(cè)Sn=(n∈N*).用數(shù)學(xué)歸納法證明如下:…(5分)
(1)當(dāng)n=1時(shí),S1==,等式成立
(2)假設(shè)當(dāng)n=k時(shí),等式成立,
即Sk=,那么當(dāng)n=k+1時(shí),
Sk+1=Sk+
=+
=
=
=
=
也就是說,當(dāng)n=k+1時(shí),等式成立.
根據(jù)(1)和(2),可知對(duì)一切n∈N*,等式均成立…(10分)
點(diǎn)評(píng):本題主要考查數(shù)學(xué)歸納法的應(yīng)用,用歸納法證明數(shù)學(xué)命題時(shí)的基本步驟:(1)檢驗(yàn)n=1成立(2)假設(shè)n=k時(shí)成立,由n=k成立推導(dǎo)n=k+1成立,要注意由歸納假設(shè)到檢驗(yàn)n=k+1的遞推.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an是首項(xiàng)為1的等比數(shù)列,Sn是an的前n項(xiàng)和,且S6=9S3,則數(shù)列an的通項(xiàng)公式是( 。
A、2n-1B、21-nC、31-nD、3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的前n項(xiàng)和為Sn,a1=2,nan+1=Sn+n(n+1),
(1)求數(shù)列an的通項(xiàng)公式;
(2)設(shè)bn=
Sn2n
,如果對(duì)一切正整數(shù)n都有bn≤t,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an滿足a1=1,an+1=an+n(n∈N*),數(shù)列bn滿足b1=1,(n+2)bn+1=nbn(n∈N*),數(shù)列cn滿足c1=1,
c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1
(n∈N*
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)求數(shù)列cn的通項(xiàng)公式;
(3)是否存在正整數(shù)k使得k(an+
7
2
)-
3
bn+1
cn+6n+15
對(duì)一切n∈N*恒成立,若存在求k的最小值;若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,Tn=
S1+S2+…+Sn
n
,稱Tn為數(shù)列a1,a2,…an的“理想數(shù)”,已知數(shù)列a1,a2,…a500的“理想數(shù)”為2004,那么數(shù)列2,a1,a2,…a500的“理想數(shù)”為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列
2
、
6
10
、
14
、3
2
…那么7
2
是這個(gè)數(shù)列的第幾項(xiàng)( 。
A、23B、24C、19D、25

查看答案和解析>>

同步練習(xí)冊(cè)答案