【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,點(diǎn)是拋物線上一點(diǎn),且

(1)求的值;

(2)若為拋物線上異于的兩點(diǎn),且.記點(diǎn)到直線的距離分別為,求的值.

【答案】(1);(2).

【解析】分析:(1)利用拋物線的定義求p的值.(2)先求出a的值,再聯(lián)立直線的方程和拋物線的方程得到韋達(dá)定理,再求|(y1+2) (y2+2)|的值.

詳解:(1)因?yàn)辄c(diǎn)A(1,a) (a>0)是拋物線C上一點(diǎn),且AF=2,

所以1=2,所以p=2.

(2)由(1)得拋物線方程為y2=4x

因?yàn)辄c(diǎn)A(1,a) (a>0)是拋物線C上一點(diǎn),所以a=2.

設(shè)直線AM方程為x-1=m (y-2) (m≠0),M(x1,y1),N(x2,y2).

消去x,得y2-4m y+8m-4=0,

即(y-2)( y-4m+2)=0,所以y1=4m-2.

因?yàn)?/span>AMAN,所以-m,得y2=--2,

所以d1d2=|(y1+2) (y2+2)|=|4m×(-)|=16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】渦陽縣某華為手機(jī)專賣店對市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,在已購買華為手機(jī)的名市民中,隨機(jī)抽取名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如圖:

分組(歲)

頻數(shù)

合計(jì)

1)求頻數(shù)分布表中、的值,并補(bǔ)全頻率分布直方圖;

2)在抽取的這名市民中,從年齡在內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機(jī)宣傳活動,現(xiàn)從這人中隨機(jī)選取人各贈送一部華為手機(jī),求這人中恰有人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解當(dāng)下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位: )進(jìn)行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.

(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?

(2)從所抽取的樣本中身高在的男生中隨機(jī)再選出2人調(diào)查其平時體育鍛煉習(xí)慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,該幾何體從上到下由四個簡單幾何體組成,其體積分別記為V1 , V2 , V3 , V4 , 上面兩個簡單幾何體均為旋轉(zhuǎn)體,下面兩個簡單幾何體均為多面體,則有(

A.V1<V2<V4<V3
B.V1<V3<V2<V4
C.V2<V1<V3<V4
D.V2<V3<V1<V4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,其余棱長均為是棱上的一點(diǎn),分別為棱的中點(diǎn).

(1)求證: 平面平面;

(2)若平面,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會人數(shù) (萬人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費(fèi)用).

參考公式: , .

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點(diǎn)且不與x軸重合的直線l與C1 , C2的四個交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記 ,△BDM和△ABN的面積分別為S1和S2

(1)當(dāng)直線l與y軸重合時,若S1=λS2 , 求λ的值;
(2)當(dāng)λ變化時,是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點(diǎn), ,O為BC的中點(diǎn).將△ADE沿DE折起,得到如圖2所示的四棱椎A(chǔ)′﹣BCDE,其中A′O=

(1)證明:A′O⊥平面BCDE;
(2)求二面角A′﹣CD﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)學(xué)院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;

(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?

參考公式:回歸直線的方程,

其中,

查看答案和解析>>

同步練習(xí)冊答案