在如圖所示的幾何體中,正方形ABCD和矩形ABEF所在的平面互相垂直,M為AF的中點,BN⊥CE.
(1)求證:CF∥平面MBD;
(2)求證:CF⊥平面BDN.
(1)見解析 (2)見解析
【解析】證明:(1)連接AC交BD于點O,連接OM.
因為四邊形ABCD是正方形,所以O為AC的中點.
因為M為AF的中點,所以CF∥OM,
又OM?平面MBD,CF?平面MBD,所以CF∥平面MBD.
(2)因為正方形ABCD和矩形ABEF所在的平面互相垂直,
所以AF⊥平面ABCD,又BD?平面ABCD,所以AF⊥BD.
又四邊形ABCD是正方形,所以AC⊥BD.
因為AC∩AF=A,所以BD⊥平面ACF,
因為CF?平面ACF,所以CF⊥BD.
因為AB⊥BC,AB⊥BE,BC∩BE=B,所以AB⊥平面BCE.
因為BN?平面BCE,所以AB⊥BN,易知EF∥AB,
所以EF⊥BN.
又EC⊥BN,EF∩EC=E,所以BN⊥平面CEF,
因為CF?平面CEF,所以BN⊥CF.
因為BD∩BN=B,所以CF⊥平面BDN.
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:填空題
若圓的方程為x2+y2+kx+2y+k2=0,則當圓的面積最大時,圓心坐標為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-7立體幾何中的向量方法(解析版) 題型:解答題
如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-6空間向量及運算(解析版) 題型:填空題
如圖,直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=2,∠B1A1C1=90°,D為BB1的中點,則異面直線C1D與A1C所成角的余弦值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-6空間向量及運算(解析版) 題型:選擇題
已知正方體ABCD-A1B1C1D1中,點E為上底面A1C1的中心,若=+x+y,則x、y的值分別為( )
A.x=1,y=1 B.x=1,y=
C.x=,y= D.x=,y=1
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:選擇題
如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論正確的是( )
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直線BC∥平面PAE
D.直線PD與平面ABC所成的角為45°
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:選擇題
在正方體ABCD-A1B1C1D1中,點M,N分別在線段AB1,BC1上,且AM=BN.以下結論:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,其中有可能成立的個數(shù)為( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-3空間點直線平面之間的位置關系(解析版) 題型:解答題
如圖所示,正方體ABCD-A1B1C1D1中,A1C與截面DBC1交于O點,AC,BD交于M點,求證:C1,O,M三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-6直接證明與間接證明(解析版) 題型:選擇題
若a,b∈R,則下面四個式子中恒成立的是( )
A.lg(1+a2)>0 B.a(chǎn)2+b2≥2(a-b-1)
C.a(chǎn)2+3ab>2b2 D. <
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com