如圖所示,正方體ABCD-A1B1C1D1中,A1C與截面DBC1交于O點(diǎn),AC,BD交于M點(diǎn),求證:C1,O,M三點(diǎn)共線.

 

 

見解析

【解析】證明:∵C1∈平面A1ACC1,且C1∈平面DBC1,

∴C1是平面A1ACC1與平面DBC1的公共點(diǎn).

又∵M(jìn)∈AC,∴M∈平面A1ACC1.

∵M(jìn)∈BD,∴M∈平面DBC1,

∴M也是平面A1ACC1與平面DBC1的公共點(diǎn),

∴C1M是平面A1ACC1與平面DBC1的交線.

∵O為 A1C與截面DBC1的交點(diǎn),

∴O∈平面A1ACC1,O∈平面DBC1,

即O也是兩平面的公共點(diǎn),

∴O∈直線C1M,即C1,O,M三點(diǎn)共線.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:解答題

已知點(diǎn)A(3,3),B(5,2)到直線l的距離相等,且直線l經(jīng)過(guò)兩直線l1:3x-y-1=0和l2:x+y-3=0的交點(diǎn),求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:解答題

在如圖所示的幾何體中,正方形ABCD和矩形ABEF所在的平面互相垂直,M為AF的中點(diǎn),BN⊥CE.

(1)求證:CF∥平面MBD;

(2)求證:CF⊥平面BDN.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:填空題

對(duì)于平面M與平面N,有下列條件:①M(fèi),N都垂直于平面Q;②M、N都平行于平面Q;③M內(nèi)不共線的三點(diǎn)到N的距離相等;④l,m為兩條平行直線,且l∥M,m∥N;⑤l,m是異面直線,且l∥M,m∥M;l∥N,m∥N,則可判定平面M與平面N平行的條件是________(填正確結(jié)論的序號(hào)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:選擇題

設(shè)m、n表示不同直線,α、β表示不同平面,則下列結(jié)論中正確的是(  )

A.若m∥α,m∥n,則n∥α

B.若m?α,n?β,m∥β,n∥α,則α∥β

C.若α∥β,m∥α,m∥n,則n∥β

D.若α∥β,m∥α,n∥m,n?β,則n∥β

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點(diǎn)直線平面之間的位置關(guān)系(解析版) 題型:選擇題

如圖,若Ω是長(zhǎng)方體ABCD-A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點(diǎn),F(xiàn)為線段BB1上異于B1的點(diǎn),且EH∥A1D1,則下列結(jié)論中不正確的是(  )

A.EH∥FG

B.四邊形EFGH是矩形

C.Ω是棱柱

D.Ω是棱臺(tái)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:填空題

若某幾何體的三視圖如圖所示,則此幾何體的體積是________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-7數(shù)學(xué)歸納法(解析版) 題型:解答題

用數(shù)學(xué)歸納法證明42n+1+3n+2能被13整除,其中n∈N*.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-4基本不等式(解析版) 題型:解答題

已知lg(3x)+lgy=lg(x+y+1).

(1)求xy的最小值;

(2)求x+y的最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案