9.已知函數(shù)f(x)=ln$\frac{1-x}{3+x}$+x3+3x2+3x,則下列說法正確的是( 。
A.函數(shù)f(x)的圖象關(guān)于x=-1對(duì)稱B.函數(shù)f(x)的圖象關(guān)于y=-1對(duì)稱
C.函數(shù)f(x)的圖象關(guān)于(-1,0)中心對(duì)稱D.函數(shù)f(x)的圖象關(guān)于(-1,-1)中心對(duì)稱

分析 首先考查函數(shù)向右平移1個(gè)單位長度,然后向上平移1個(gè)單位長度后圖象的特征,然后結(jié)合題意考查所給函數(shù)的特征即可求得最終結(jié)果.

解答 解:將函數(shù)圖象向右平移1個(gè)單位長度,然后向上平移1個(gè)單位長度,所得函數(shù)的解析式為:
f(x-1)+1=ln$\frac{1-(x-1)}{3+(x-1)}$+(x-1)3+3(x-1)2+3(x-1)+1=ln$\frac{2-x}{2+x}$+x3,
則函數(shù)g(x)=f(x-1)+1的定義域?yàn)椋?2,2),且g(-x)=-g(x),即函數(shù)g(x)是奇函數(shù),關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱,則函數(shù)f(x)的圖象關(guān)于(-1,-1)中心對(duì)稱.
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)圖象的平移變換,函數(shù)的奇偶性,函數(shù)的定義域等,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|2x-1|.
(Ⅰ)求不等式f(x)<|x-1|的解集;
(Ⅱ)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{{m}^{2}+2}{m}$+$\frac{{n}^{2}+1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線y2=2px,p為方程x2-4x-12=0的根.
(Ⅰ)求拋物線的方程;
(Ⅱ)若拋物線與直線y=2x-5無公共點(diǎn),試在拋物線上求一點(diǎn),使這點(diǎn)到直線y=2x-5的距離最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$sinα=\frac{1}{3},α∈({\frac{π}{2},π})$,則cos(-α)=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.以集合U={a,b,c,d}的子集中選出3個(gè)不同的子集,需同時(shí)滿足以下兩個(gè)條件:(1)U={a,b,c,d}要選出;(2)對(duì)選出的任意兩個(gè)子集A和B,必有A⊆B或B⊆A,那么共有50種不同的選法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在如圖所示的多面體ABCDEF中,ABCD為直角梯形,AB∥CD,∠DAB=90°,四邊形ADEF為等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.
(1)求證:平面ABCD⊥平面ADEF;
(2)求直線CF與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在?ABCD中,∠B=30°,AB=AC,O是兩條對(duì)角線的交點(diǎn),過點(diǎn)O作AC的垂線分別交邊AD,BC于點(diǎn)E,F(xiàn),點(diǎn)M是邊AB的一個(gè)三等分點(diǎn),則△AOE與△BMF的面積比為3:4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知平面上的曲線l及點(diǎn)P,在l上任取一點(diǎn)Q,線段PQ長度的最小值稱為點(diǎn)P到曲線l的距離,記作d(P,l).
(1)求點(diǎn)P(3,4)到曲線l:x2+y2=4的距離d(P,l);
(2)設(shè)曲線l:$\left\{\begin{array}{l}{{y}^{2}=1(-1<x<1)}\\{(x-1)^{2}+{y}^{2}=1(1≤x≤2)}\\{(x+1)^{2}+{y}^{2}=1(-2≤x≤-1)}\end{array}\right.$,求點(diǎn)集S={P|2<d(P,l)≤3}所表示圖形的面積;
(3)設(shè)曲線l1:y=0(-1≤x≤1),曲線l2:x2+y2=1,求出到兩條曲線l1,l2距離相等的點(diǎn)的集合Ω={P|d(P,l1)=d(P,l2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了得到函數(shù)y=cos2x的圖象,可將函數(shù)$y=sin({2x-\frac{π}{6}})$的圖象( 。
A.向右平移$\frac{π}{6}$個(gè)單位長度B.向右平移$\frac{π}{3}$個(gè)單位長度
C.向左平移$\frac{π}{6}$個(gè)單位長度D.向左平移$\frac{π}{3}$個(gè)單位長度

查看答案和解析>>

同步練習(xí)冊(cè)答案