【題目】已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A,B兩點.若A是PB的中點,求直線m的斜率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)r是方程f(x)=0的根,選取x0作為r的初始近似值,過點(x0,f(x0))做曲線y=f(x)的切線l,l的方程為y=f(x0)+(x-x0),求出l與x軸交點的橫坐標(biāo)x1=x0-,稱x1為r的一次近似值。過點(x1,f(x1))做曲線y=f(x)的切線,并求該切線與x軸交點的橫坐標(biāo)x2=x1-,稱x2為r的二次近似值。重復(fù)以上過程,得r的近似值序列,其中,=-,稱為r的n+1次近似值,上式稱為牛頓迭代公式。已知是方程-6=0的一個根,若取x0=2作為r的初始近似值,則在保留四位小數(shù)的前提下,≈
A. 2.4494 B. 2.4495 C. 2.4496 D. 2.4497
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C上任意一點M到點F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點 P(2,2)的直線m與曲線C交于A,B兩點,設(shè)當(dāng)△AOB的面積為4時(O為坐標(biāo)原點),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線 的兩個焦點分別為F1、F2離心率e=2.
(1)求此雙曲線的漸近線l1、l2的方程;
(2)若A、B分別為l1、l2上的點,且 求線段AB的中點M的軌跡方程.
(3)過點N(1,0)能否作直線l , 使l與雙曲線交于不同兩點P、Q.且 ,若存在,求直線l的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,(a為常數(shù)且a>0).
(1)若函數(shù)的定義域為 ,值域為 ,求a的值;
(2)在(1)的條件下,定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度為n﹣m,其中n>m,若不等式f(x)+b>0,x∈[0,π]的解集構(gòu)成的各區(qū)間的長度和超過 ,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,與函數(shù)y=2x表示同一函數(shù)的是( )
A.y=
B.y=
C.y=( )2
D.y=log24x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{bn}是首項b1=1,b4=10的等差數(shù)列,設(shè)bn+2=3 an(n∈n*).
(1)求證:{an}是等比數(shù)列;
(2)記cn= ,求數(shù)列{cn}的前n項和Sn;
(3)記dn=(3n+1)Sn , 若對任意正整數(shù)n,不等式 + +…+ > 恒成立,求整數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為( )
A.9
B.18
C.27
D.36
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com