【題目】已知曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點(diǎn) P(2,2)的直線m與曲線C交于A,B兩點(diǎn),設(shè)當(dāng)△AOB的面積為4時(shí)(O為坐標(biāo)原點(diǎn)),求 的值.

【答案】
(1)

【解答】 點(diǎn)M到點(diǎn)F(1.0)的距離比它到直線的距離小于1,

∴點(diǎn)M在直線l的上方,點(diǎn)M到F(1,0)的距離與它到直線 的距離相等 所以點(diǎn)M的軌跡C是以F為焦點(diǎn),l'為準(zhǔn)線的拋物線 ,所以曲線C的方程為x2=4y .


(2)

【解答】當(dāng)直線m的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

設(shè)直線m的方程為 ,代入 (*)

,對(duì)恒成立,所以直線m與曲線C恒有兩個(gè)不同的交點(diǎn)設(shè)交點(diǎn)A,B的坐標(biāo)分別為 ,

所以

點(diǎn)O到直線m的距離

所以

所以(舍去)

當(dāng) 是, 方程(*)的解為 ,

當(dāng) 時(shí) 方程(☆)的解為


【解析】(1)由題設(shè)知:點(diǎn)M的軌跡C是以F為焦點(diǎn),l′為準(zhǔn)線的拋物線,由此能求出曲線C的方程.(2)設(shè)直線m的方程為y=kx+(2-2k),代入x2=4y,得x2-4kx+8(k-1)=0,由△=16(k2-2k+2)>0對(duì)k∈R恒成立,知直線m與曲線C恒有兩個(gè)不同的交點(diǎn),再由韋達(dá)定理、弦長(zhǎng)公式、點(diǎn)到直線的距離公式,利用 、△AOB的面積為4 ,能求出λ的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合S={A0 , A1 , A2 , A3},在S上定義運(yùn)算⊕:Ai⊕Aj=Ak , 其中k為i+j被4除的余數(shù),i,j=0,1,2,3,則使關(guān)系式(Ai⊕Ai)⊕Aj=A0成立的有序數(shù)對(duì)(i,j)的組數(shù)為(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=x2-2x+1+alnx 有兩個(gè)極值點(diǎn) x1,x2 , 且x1<x2 ,則( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,
(Ⅰ) 證明f(x)在[1,+∞)上是增函數(shù);
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,函數(shù) f(x)=x2(x-a) ,若f'(1)=1 .
(1)求 a 的值并求曲線 y=f(x) 在點(diǎn)(1,f(1)) 處的切線方程y=g(x) ;
(2)設(shè)h(x)=f'(x)+g(x) ,求 h(x) 在 [0,1] 上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對(duì)任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )

A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)橢圓 內(nèi)部重疊區(qū)域的邊界記為曲線C,P是曲線C上的任意一點(diǎn),給出下列四個(gè)判斷:

①PF1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點(diǎn)的距離之和為定值;

②曲線C關(guān)于直線y=x、y=-x均對(duì)稱;③曲線C所圍區(qū)域面積必小于36.

④曲線C總長(zhǎng)度不大于6π.上述判斷中正確命題的序號(hào)為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)M(x,y)到直線lx=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn).若APB的中點(diǎn),求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象,則下面判斷正確的是(

A.在區(qū)間(﹣2,1)上f(x)是增函數(shù)
B.在(1,3)上f(x)是減函數(shù)
C.在(4,5)上f(x)是增函數(shù)
D.當(dāng)x=4時(shí),f(x)取極大值

查看答案和解析>>

同步練習(xí)冊(cè)答案