不等式選講
已知a,b為正數(shù),求證:
【答案】分析:欲證.即證:(a+b)(+)≥9,這個(gè)不等式的證明只要將左邊展開(kāi)利用基本不等式即可得到.
解答:證明:∵a>0,b>0,
所以

點(diǎn)評(píng):本題主要考查不等式的證明.從已知條件出發(fā),利用定義、公理、定理、某些已經(jīng)證明過(guò)的不等式及不等式的性質(zhì)經(jīng)過(guò)一系列的推理、論證等而推導(dǎo)出所要證明的不等式,這個(gè)證明方法叫綜合法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個(gè)點(diǎn)M(x,y)的橫坐標(biāo)乘2,縱坐標(biāo)乘4,變到點(diǎn)M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與原點(diǎn)重合,極軸與x軸的正半軸重合.若曲線C1的極坐標(biāo)方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
x=1-
3
t
y=t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)直線?上有一定點(diǎn)P(1,0),曲線C1與?交于M,N兩點(diǎn),求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇一模)選做題
(A)選修4-1:幾何證明選講
如圖,AB是半圓O的直徑,延長(zhǎng)AB到C,使BC=
3
,CD切半圓于點(diǎn)D,DE⊥AB,垂足為E,若AE:EB=3:1,求DE的長(zhǎng).
(B)選修4-2:矩陣與變換
在平面直角坐標(biāo)系xOy中,直線y=kx在矩陣
01
10
對(duì)應(yīng)的變換下得到的直線經(jīng)過(guò)點(diǎn)P(4,1),求實(shí)數(shù)k的值.
(C)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知圓ρ=asinθ(a>0)與直線ρcos(θ+
π
4
)=1
相切,求實(shí)數(shù)a的值.
(D)選修4-5:不等式選講
已知a,b,c滿足abc=1,求證:(a+2)(b+2)(c+2)≥27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2+m-1=0
(I)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(II)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州模擬)[選修4-5:不等式選講]
已知a,b,c為正數(shù),且滿足acos2θ+bsin2θ<c,求證:
a
cos2θ+
b
sin2θ<
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
已知a,b,x,y都是正數(shù),且a+b=1,求證:(ax+by)(bx-ay)≥xy.

查看答案和解析>>

同步練習(xí)冊(cè)答案