某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,為圓柱的高,為球的半徑,).假設該儲油罐的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為3千元.設該儲油罐的建造費用為千元.
(1)寫出關于的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費用最小時的的值.

(1)(2).

解析試題分析:(1)求實際問題函數(shù)解析式,關鍵正確理解題意,列出正確的等量關系,明確自變量取值范圍. 儲油罐的建造費用等于圓柱形部分建造費用與半球形部分建造費用之和,得:,(2)所研究函數(shù)是一個關于的一元二次函數(shù),求其最值關鍵在于研究對稱軸與定義區(qū)間之間位置關系,上是增函數(shù),所以當時,儲油罐的建造費用最小.
[解] :(1)                      3分
)                  6分
(2)                 8分
    上是增函數(shù)      12分
所以當時,儲油罐的建造費用最小.           14分
考點:函數(shù)解析式,二次函數(shù)最值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為集合,關于的不等式的解集為,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠生產(chǎn)一種產(chǎn)品的原材料費為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機器保養(yǎng)等費用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費;
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調查:每件產(chǎn)品的銷售價Q(x)與產(chǎn)品件數(shù)x有如下關系:Q(x)=170-0.05x,試問生產(chǎn)多少件產(chǎn)品時,總利潤最高?(總利潤=總銷售額-總成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當0≤x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.(精確到1輛/小時).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)定義在上,對任意的,,且.
(1)求,并證明:
(2)若單調,且.設向量,對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知都是實數(shù),且
(1)求不等式的解集;
(2)若對滿足條件的所有實數(shù)都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和,數(shù)列滿足
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于函數(shù),若在定義域內存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)若為定義域上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=logax(a>0且a≠1),如果對于任意的x∈都有|f(x)|≤1成立,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案