某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調(diào)查:每件產(chǎn)品的銷售價Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:Q(x)=170-0.05x,試問生產(chǎn)多少件產(chǎn)品時,總利潤最高?(總利潤=總銷售額-總成本)

(1)P(x)=+40+0.05x,每件產(chǎn)品成本的最小值為90元
(2)生產(chǎn)650件產(chǎn)品時,總利潤最高,最高總利潤為29750元

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)滿足:①當(dāng)x=1時有極值;②圖象與y軸交點(diǎn)的縱坐標(biāo)為﹣3,且在該點(diǎn)處的切線與直線x=2y﹣4垂直.
(1)求f(1)的值;
(2)若函數(shù)g(x)=f(lnx),x∈(1,+∞)上任意一點(diǎn)處的切線斜率恒大于a2﹣a﹣2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)
(1)當(dāng)時,的最大值為,求的最小值;
(2)對于任意的,總有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有一種密英文的明文(真實(shí)文)按字母分解,其中英文的a,b,c, ,z的26個字母(不分大小寫),依次對應(yīng)1,2,3, ,26這26個自然數(shù),見如下表格:

a
b
c
d
e
f
g
h
i
j
k
l
m
1
2
3
4
5
6
7
8
9
10
11
12
13
n
o
p
q
r
s
t
u
v
w
x
y
z
14
15
16
17
18
19
20
21
22
23
24
25
26
 
給出如下變換公式:

將明文轉(zhuǎn)換成密文,如,即變成;如,即變成.
(1)按上述規(guī)定,將明文譯成的密文是什么?
(2)按上述規(guī)定,若將某明文譯成的密文是,那么原來的明文是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為實(shí)常數(shù)).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)在區(qū)間上的最小值為,求的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足對任意的恒有,且當(dāng)時,.
(1)求的值;
(2)判斷的單調(diào)性
(3)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個相異的不動點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動點(diǎn),且A,B兩點(diǎn)關(guān)于直線y=kx+對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某加油站擬造如圖所示的鐵皮儲油罐(不計(jì)厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,為圓柱的高,為球的半徑,).假設(shè)該儲油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為千元,半球形部分每平方米建造費(fèi)用為3千元.設(shè)該儲油罐的建造費(fèi)用為千元.
(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費(fèi)用最小時的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)解方程:;
(2)令,求證:
;
(3)若是實(shí)數(shù)集上的奇函數(shù),且
對任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案