A. | 2$\sqrt{2}$ | B. | 4 | C. | 4$\sqrt{2}$ | D. | 8 |
分析 直線l1:kx+y=0過定點(diǎn)P(0,0),由kx-y-2k+2=0化為k(x-2)+(2-y)=0,可得直線l2:kx-y-2k+2=0過定點(diǎn)Q(2,2).可以判定兩條直線相互垂直.利用2(|MP|2+|MQ|2)≥(|MP|+|MQ|)2,即可得出.
解答 解:直線l1:kx+y=0過定點(diǎn)P(0,0),
由kx-y-2k+2=0化為k(x-2)+(2-y)=0,令$\left\{\begin{array}{l}{x-2=0}\\{2-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$.
直線l2:kx-y-2k+2=0過定點(diǎn)Q(2,2).
∴|PQ|2=22+22=8.
當(dāng)k≠0時(shí),兩條直線的斜率滿足$-\frac{1}{k}$×k=-1,此時(shí)兩條直線相互垂直;
當(dāng)k=0時(shí),兩條直線分別化為:x=0,y-2=0,此時(shí)兩條直線相互垂直.
綜上可得:兩條直線相互垂直.
∴|MP|2+|MQ|2=|PQ|2=8.
∴16=2(|MP|2+|MQ|2)≥(|MP|+|MQ|)2,
解得|MP|+|MQ|≤4,當(dāng)且僅當(dāng)|MP|=|MQ|=2時(shí)取得等號(hào).
則|MP|+|MQ|的最大值是4.
故選:B.
點(diǎn)評(píng) 本題考查了直線系的應(yīng)用、相互垂直的直線斜率之間的關(guān)系、圓的性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{5}{4}$ | C. | $\frac{9}{4}$ | D. | $\frac{17}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com