公差不為零的等差數(shù)列{an}中,2a3-a72+2a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b6b8=( 。
A、2B、4C、8D、16
考點:等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:由2a3-a72+2a11=0結(jié)合性質(zhì)求得a7,再求得b7,由等比數(shù)列的性質(zhì)求得b6b8
解答: 解:由等差數(shù)列的性質(zhì):2a3-a72+2a11=0得:
∵a72=2(a3+a11)=4a7,
∴a7=4或a7=0,
∴b7=4,
∴b6b8=b72=16,
故選:D.
點評:本題考查學(xué)生靈活運用等差數(shù)列的性質(zhì)及等比數(shù)列的性質(zhì)化簡求值,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:若xy≠4,則x≠1或y≠4,命題q:對任意實數(shù)x有x2-x+1>0,則( 。
A、“p或¬q”為假命題
B、“¬p且q”為真命題
C、“¬p或q”為假命題
D、“p且q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax,a∈R.
(Ⅰ)若曲線y=f(x)在任意點處的切線的傾斜角都是銳角,求a的取值范圍;
(Ⅱ)若函數(shù)f(x)在區(qū)間(
1
e
,e)內(nèi)有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+b)x2+(ab-2)x+c
的極大值和極小值點分別為α、β,則a、b、α、β的大小關(guān)系可能為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
x
-x+alnx(a∈R,a≠0).
(1)若a=
5
2
,求f(x)的極值;
(2)設(shè)函數(shù)g(x)=f(x)+x,求函數(shù)g(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)f(x)在x=x1和x=x2(x1<x2)時取得極值,且
f(x2)-f(x1)
x2-x1
2e
e2-1
a-2(其中e是自然對數(shù)的底數(shù)),求證:x2≥e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校有6間電腦室,每天晚上至少開放2間、則不同安排方案的種數(shù)為,①C62;②
C
2
6
+C63+2C64+C56+C66;③26-7;④P62,則正確的結(jié)論是( 。
A、僅有①B、僅有②
C、有②和③D、僅有④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1 B1 C1 D1中,過AA1中點P作直線l,分別與異面直線BC、C1 D1相交于M、N兩點,則線段MN的長為( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),橢圓過點(0,1)且離心率e=
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)A、B是橢圓上兩點,且關(guān)于x軸對稱,E是橢圓上不同于A、B的一點,且直線BE、AE分別交x軸于點P、Q,求證|OQ|•|OP|是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x2-3x-4
的定義域為A,函數(shù)g(x)=
2-|x+a|
的定義域為B,若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案