科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點.若l與圓x2+y2=1相切,求證:OP⊥OQ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線經(jīng)過點,傾斜角,
(1)寫出直線的參數(shù)方程;
(2)設(shè)與圓相交于A、B兩點,求點P到A、B兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以為圓心的圓與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)圓與軸相交于兩點,圓內(nèi)的動點使成等比數(shù)列,求的取值范圍(結(jié)果用區(qū)間表示).:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知圓的圓心為,圓:的圓心為,一動圓與圓內(nèi)切,與圓外切.
(Ⅰ)求動圓圓心的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點,使得為鈍角?若存在,求出點橫坐標(biāo)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
在直角坐標(biāo)系xOy中,直線l與x軸正半軸和y軸正半軸分別相交于A,B兩點,△AOB的內(nèi)切圓為圓M.
(1)如果圓M的半徑為1,l與圓M切于點C (,1+),求直線l的方程;
(2)如果圓M的半徑為1,證明:當(dāng)△AOB的面積、周長最小時,此時△AOB為同一個三角形;
(3)如果l的方程為x+y-2-=0,P為圓M上任一點,求++的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C1和拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點,從它們每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:
x | 5 | - | 4 | ||
y | 2 | 0 | -4 | - |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com