考點(diǎn):數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知得
S1=a1=a12+a1-,S
n-S
n-1=a
n=
a
n2+
a
n-
a
n-12-
a
n-1,從而(a
n+a
n-1)(a
n-a
n-1-1)=0,進(jìn)而推導(dǎo)出數(shù)列{a
n}是首項(xiàng)為3,公差為1的等差數(shù)列,由此能求出a
n.
解答:
解:∵S
n是正項(xiàng)數(shù)列{a
n}的前n項(xiàng)和且n∈N
*,S
n=
a
n2+
a
n-
,①
∴n=1時(shí),
S1=a1=a12+a1-,
整理,得
a12-2a1-3=0,
解得a
1=3或a
1=-1(舍),
當(dāng)n≥2時(shí),S
n-1=
a
n-12+
a
n-1-
,②
①-②,得:S
n-S
n-1=a
n=
a
n2+
a
n-
a
n-12-
a
n-1,
整理,得(a
n+a
n-1)(a
n-a
n-1-1)=0,
∵正項(xiàng)數(shù)列{a
n}中,a
n+a
n-1>0,
∴a
n-a
n-1-1=0,
∴數(shù)列{a
n}是首項(xiàng)為3,公差為1的等差數(shù)列,
∴a
n=3+(n-1)×1=n+2.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時(shí)要注意遞推公式和等差數(shù)列的性質(zhì)的合理運(yùn)用.