已知圓O:交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)P作直線PF的垂線交直線于點(diǎn)Q.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ圓O相切;

(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

 

【答案】

(1) +y2="1" (2)因?yàn)镻(1,1),所以kPF=,所以kOQ=-2,所以直線OQ的方程為y=-2x.再由橢圓的左準(zhǔn)線方程為x=-2,能夠證明直線PQ與圓O相切.

(3) 直線PQ始終與圓O相切

【解析】

試題分析:因?yàn)閍=,e=,所以c=1(2分)則b=1,即橢圓C的標(biāo)準(zhǔn)方程為+y2=1(4分)(2)因?yàn)镻(1,1),所以kPF=,所以kOQ=-2,所以直線OQ的方程為y=-2x(6分)

又橢圓的左準(zhǔn)線方程為x=-2,所以點(diǎn)Q(-2,4)(7分)

所以kPQ=-1,又kOP=1,所以kOP⊥kPQ=-1,即OP⊥PQ,

故直線PQ與圓O相切(9分)

(3)當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),直線PQ與圓O保持相切(10分)

證明:設(shè)P(x0,y0)(x0≠±),則y02=2-x02,所以kPF=,kOQ=-,所以直線OQ的方程為y="-" x(12分)所以點(diǎn)Q(-2,(13分)所以kPQ= - ,又kOP= ,所以kOP⊥kPQ=-1,即OP⊥PQ,故直線PQ始終與圓O相切

考點(diǎn):橢圓方程以及直線與橢圓位置關(guān)系

點(diǎn)評(píng):本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意公式的合理運(yùn)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知與圓C:x2+y2-2x-2y+1=0相切的直線交x軸于A點(diǎn),交y軸于B點(diǎn),O為原點(diǎn),|OA|=a,|OB|=b(a>2,b>2).則線段AB中點(diǎn)的軌跡方程為
2xy-2x-2y-1=0(x>0,y>0)
2xy-2x-2y-1=0(x>0,y>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F,若P是圓O上一點(diǎn),連接PF,過原點(diǎn)O作直線PF的垂線交橢圓的左準(zhǔn)線l于點(diǎn)Q.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),
①求線段PQ的長(zhǎng);
②求證:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省聊城市某重點(diǎn)高中高三上學(xué)期1月份模塊檢測(cè)文科數(shù)學(xué)試卷(帶解析) 題型:解答題

已知圓O:交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)P作直線PF的垂線交直線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三5月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓O:交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交直線于點(diǎn)Q.

   (1)求橢圓C的標(biāo)準(zhǔn)方程;

   (2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ圓O相切;

   (3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案