【題目】寫出下列各組命題構成的“p或q”、“p且q”以及“非p”形式的命題,并判斷它們的真假.
(1) 是有理數,q: 是整數;
(2)不等式x2-2x-3>0的解集是(-∞,-1),q:不等式x2-2x-3>0的解集是(3,+∞).
【答案】
(1)
【解答】p或q: 是有理數或 是整數;
p且q: 是有理數,且 是整數;
非p: 不是有理數.
因為p假,q假,所以p或q為假,p且q為假,非p為真.
(2)
【解答】p或q:不等式x2-2x-3>0的解集是(-∞,-1)或不等式x2-2x-3>0的解集是(3,+∞);
p且q:不等式x2-2x-3>0的解集是(-∞,-1)且不等式x2-2x-3>0的解集是(3,+∞);
非p:不等式x2-2x-3>0的解集不是(-∞,-1).
因為p假,q假,所以p或q假,p且q假,非p為真.
【解析】先根據定義寫出“p或q”、“p且q”以及“非p”形式,由判斷復合命題的口訣(或命題:有真則真;且命題:有假則假;非命題:真假相反。)進行判斷即可。
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ax2﹣(2a+1)x+2lnx(a≥0)
(1)當a=0時,求f(x)的單調區(qū)間;
(2)求y=f(x)在區(qū)間(0,2]上的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】綜合題。
(1)3人坐在有八個座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數為多少?
(2)有5個人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)= 是定義在(﹣∞,+∞)上的奇函數,且f( )= .
(1)求實數a、b,并確定函數f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調性,并用定義證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則”
B.命題“?,x>1”的否定是“,x2>1”
C.命題“若x=y,則cosx=cosy"的逆否命題為假命題
D.命題“若x=y,則cosx=cosy"的逆命題為假命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠用鮮牛奶在某臺設備上生產A,B兩種奶制品.生產1噸A產品需鮮牛奶2噸,使用設備1小時,獲利1 000元;生產1噸B產品需鮮牛奶1.5噸,使用設備1.5小時,獲利1 200元.要求每天B產品的產量不超過A產品產量的2倍,設備每天生產A,B兩種產品時間之和不超過12小時.假定每天可獲取的鮮牛奶數量W(單位:噸)是一個隨機變量,其分布列為
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
該廠每天根據獲取的鮮牛奶數量安排生產,使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機變量.
(I)求Z的分布列和均值;
(II)若每天可獲取的鮮牛奶數量相互獨立,求3天中至少有1天的最大獲利超過10 000元的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com