【題目】某音樂院校舉行“校園之星”評選活動,評委由本校全體學(xué)生組成,對兩位選手,隨機調(diào)查了個學(xué)生的評分,得到下面的莖葉圖:

通過莖葉圖比較兩位選手所得分?jǐn)?shù)的平均值及分散程度(不要求計算出具體值,得出結(jié)論即可);

校方將會根據(jù)評分記過對參賽選手進(jìn)行三向分流:

所得分?jǐn)?shù)

低于

分到

不低于

分流方向

淘汰出局

復(fù)賽待選

直接晉級

記事件獲得的分流等級高于”,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求事件發(fā)生的概率.

【答案】(1)詳見解析(2)

【解析】

(1)通過莖葉圖可以看出,得分?jǐn)?shù)的平均值高于得分?jǐn)?shù)的平均值,得分?jǐn)?shù)比較集中,得分?jǐn)?shù)比較分散;

2)記表示事件:選手直接晉級”表示事件:選手復(fù)賽待選”表示事件:選手復(fù)賽待選”表示事件:選手淘汰出局利用獨立事件的概率乘法公式,即可求解.

(1)通過莖葉圖可以看出,選手所得分?jǐn)?shù)的平均值高于選手所得分?jǐn)?shù)的平均值;

選手所得分?jǐn)?shù)比較集中,選手所得分?jǐn)?shù)比較分散.

2)記表示事件:選手直接晉級”表示事件:選手復(fù)賽待選”

表示事件:選手復(fù)賽待選”表示事件:選手淘汰出局

獨立,獨立,互斥,

,

由所給數(shù)據(jù)得,,發(fā)生的頻率分別為.

,,,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點AB

)若α,求線段AB中點M的坐標(biāo);

)若|PA·PB|=|OP,其中P2,),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,點分別是棱,上的動點,,直線與平面所成的角為,則△的面積的最小值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實數(shù),函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)定義在上的函數(shù)在點處的切線方程為,當(dāng)時,若內(nèi)恒成立,則稱點為函數(shù)的“平衡點”.當(dāng)時,試問函數(shù)是否存在“平衡點”?若存在,請求出“平衡點”的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四名同學(xué)組成一個4100米接力隊,老師要安排他們四人的出場順序,以下是他們四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙,我就不跑第一棒.老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求,據(jù)此我們可以斷定在老師安排的出場順序中跑第三棒的人是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,且,ABE的中點沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐

求證;

平面ABCD

求二面角的大小;

在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,點的中點.

求證:平面;

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若相交于兩點,設(shè)點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的中心在原點,焦點F1F2在坐標(biāo)軸上,離心率為,且過點.點M(3m)在雙曲線上.

(1)求雙曲線的方程;

(2)求證:;

(3)F1MF2的面積.

查看答案和解析>>

同步練習(xí)冊答案